Biopolym. Cell. 1993; 9(5):3-18.
Огляди
Cis-елементи і trans-фактори в регуляції транскрипції у рослин
- Інститут біоорганічної хімії та нафтохімії НАН України
вул. Мурманська, 1, Київ, Україна, 02094
Abstract
Огляд сучасних літературних даних про механізми регуляції транскрипції в рослинах. Аналізується структура найбільш вивчених промоторів, що функціонують у рослинах: 35S-промотора вірусу мозаїки цвітної капусти, промотора малої
субодиниці рибулозо-1,5-діфосфаткарбоксилази / оксигенази, промоторів генів пататину.
Обговорюються нові відомості про структуру регуляторних білкових факторів та можливі механізми їх взаємодії з промоторними послідовностями.
Повний текст: (PDF, російською)
References
[1]
Kuhlemeier C. Regulation Of Gene Expression In Higher Plants. Annu Rev Plant Physiol Plant Mol Biol. 1987;38(1):221–57.
[2]
Schwarz-Sommer Z, Huijser P, Nacken W, Saedler H, Sommer H. Genetic Control of Flower Development by Homeotic Genes in Antirrhinum majus. Science. 1990;250(4983):931-6.
[3]
Walden R, Schell J. Techniques in plant molecular biology--progress and problems. Eur J Biochem. 1990;192(3):563-76.
[5]
Mitchell PJ, Tjian R. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science. 1989;245(4916):371-8.
[6]
Yamamoto KR. Steroid receptor regulated transcription of specific genes and gene networks. Annu Rev Genet. 1985;19:209-52.
[7]
Jefferson RA, Kavanagh TA, Bevan MW. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 1987;6(13):3901-7.
[8]
Odell JT, Nagy F, Chua NH. Identification of DNA sequences required for activity of the cauliflower mosaic virus 35S promoter. Nature. 1985 Feb 28-Mar 6;313(6005):810-2.
[9]
Jensen JS, Marcker KA, Otten L, Schell J. Nodule-specific expression of a chimaeric soybean leghaemoglobin gene in transgenic Lotus corniculatus. Nature. 1986;321(6071):669–74.
[10]
Kay R, Chan A, Daly M, McPherson J. Duplication of CaMV 35S Promoter Sequences Creates a Strong Enhancer for Plant Genes. Science. 1987;236(4806):1299-302.
[11]
Nagy F, Boutry M, Hsu MY, Wong M, Chua NH. The 5'-proximal region of the wheat Cab-1 gene contains a 268-bp enhancer-like sequence for phytochrome response. EMBO J. 1987;6(9):2537-42.
[12]
Fang RX, Nagy F, Sivasubramaniam S, Chua NH. Multiple cis regulatory elements for maximal expression of the cauliflower mosaic virus 35S promoter in transgenic plants. Plant Cell. 1989;1(1):141-50.
[14]
Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH. Site-specific mutations alter in vitro factor binding and change promoter expression pattern in transgenic plants. Proc Natl Acad Sci U S A. 1989;86(20):7890-4.
[15]
Katagiri F, Lam E, Chua NH. Two tobacco DNA-binding proteins with homology to the nuclear factor CREB. Nature. 1989;340(6236):727-30.
[16]
Lam E, Katagiri F, Chua NH. Plant nuclear factor ASF-1 binds to an essential region of the nopaline synthase promoter. J Biol Chem. 1990;265(17):9909-13.
[17]
Fromm H, Katagiri F, Chua NH. An octopine synthase enhancer element directs tissue-specific expression and binds ASF-1, a factor from tobacco nuclear extracts. Plant Cell. 1989;1(10):977-84.
[18]
Bouchez D, Tokuhisa JG, Llewellyn DJ, Dennis ES, Ellis JG. The ocs-element is a component of the promoters of several T-DNA and plant viral genes. EMBO J. 1989;8(13):4197-204.
[19]
Benfey PN, Ren L, Chua NH. The CaMV 35S enhancer contains at least two domains which can confer different developmental and tissue-specific expression patterns. EMBO J. 1989;8(8):2195-202.
[20]
Benfey PN, Ren L, Chua NH. Tissue-specific expression from CaMV 35S enhancer subdomains in early stages of plant development. EMBO J. 1990;9(6):1677-84.
[21]
Benfey PN, Ren L, Chua NH. Combinatorial and synergistic properties of CaMV 35S enhancer subdomains. EMBO J. 1990;9(6):1685-96.
[22]
Benfey PN, Chua NH. The Cauliflower Mosaic Virus 35S Promoter: Combinatorial Regulation of Transcription in Plants. Science. 1990;250(4983):959-66.
[23]
Kuhlemeier C, Strittmatter G, Ward K, Chua NH. The Pea rbcS-3A Promoter Mediates Light Responsiveness but not Organ Specificity. Plant Cell. 1989;1(4):471-478.
[24]
Jenkins GI. Photoregulation of gene expression in plants. Photochem Photobiol. 1988;48(6):821–32.
[26]
Fluhr R, Moses P, Morelli G, Coruzzi G, Chua NH. Expression dynamics of the pea rbcS multigene family and organ distribution of the transcripts. EMBO J. 1986;5(9):2063-2071.
[27]
Gilmartin PM, Chua NH. Localization of a phytochrome-responsive element within the upstream region of pea rbcS-3A. Mol Cell Biol. 1990;10(10):5565-8.
[28]
Gilmartin PM, Chua NH. Spacing between GT-1 binding sites within a light-responsive element is critical for transcriptional activity. Plant Cell. 1990;2(5):447-55.
[29]
Green PJ, Kay SA, Chua NH. Sequence-specific interactions of a pea nuclear factor with light-responsive elements upstream of the rbcS-3A gene. EMBO J. 1987;6(9):2543-9.
[30]
Green PJ, Yong MH, Cuozzo M, Kano-Murakami Y, Silverstein P, Chua NH. Binding site requirements for pea nuclear protein factor GT-1 correlate with sequences required for light-dependent transcriptional activation of the rbcS-3A gene. EMBO J. 1988;7(13):4035-44.
[31]
Stockhaus J, Eckes P, Rocha-Sosa M, Schell J, Willmitzer L. Analysis of cis-active sequences involved in the leaf-specific expression of a potato gene in transgenic plants. Proc Natl Acad Sci U S A. 1987;84(22):7943-7.
[32]
Dean C. Structure, Evolution, And Regulation Of RbcS Genes In Higher Plants. Annu Rev Plant Physiol Plant Mol Biol. 1989;40(1):415–39.
[33]
Lawton MA, Dean SM, Dron M, Kooter JM, Kragh KM, Harrison MJ, Yu L, Tanguay L, Dixon RA, Lamb CJ. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor, SBF-1, closely related to GT-1. Plant Mol Biol. 1991;16(2):235-49.
[34]
Kuhlemeier C, Cuozzo M, Green PJ, Goyvaerts E, Ward K, Chua NH. Localization and conditional redundancy of regulatory elements in rbcS-3A, a pea gene encoding the small subunit of ribulose-bisphosphate carboxylase. Proc Natl Acad Sci U S A. 1988;85(13):4662-6.
[35]
Cuozzo-Davis M, Yong MH, Gilmartin PM, Goyvaerts E, Kuhlemeier C, Sarokin L, Chua NH. Minimal sequence requirements for the regulated expression of rbcS-3A from Pisum sativum in transgenic tobacco plants. Photochem Photobiol. 1990;52(1):43-50.
[36]
Sarokin LP, Chua NH. Binding sites for two novel phosphoproteins, 3AF5 and 3AF3, are required for rbcS-3A expression. Plant Cell. 1992;4(4):473-83.
[37]
Rocha-Sosa M, Sonnewald U, Frommer W, Stratmann M, Schell J, Willmitzer L. Both developmental and metabolic signals activate the promoter of a class I patatin gene. EMBO J. 1989;8(1):23-9.
[38]
Wenzler HC, Mignery GA, Fisher LM, Park WD. Analysis of a chimeric class-I patatin-GUS gene in transgenic potato plants: High-level expression in tubers and sucrose-inducible expression in cultured leaf and stem explants. Plant Mol Biol. 1989;12(1):41-50.
[39]
Mignery GA, Pikaard CS, Park WD. Molecular characterization of the patatin multigene family of potato. Gene. 1988;62(1):27-44.
[40]
Liu XJ, Prat S, Willmitzer L, Frommer WB. cis regulatory elements directing tuber-specific and sucrose-inducible expression of a chimeric class I patatin promoter/GUS-gene fusion. Mol Gen Genet. 1990;223(3):401-6.
[41]
Bevan M, Barker R, Goldsbrough A, Jarvis M, Kavanagh T, Iturriaga G. The structure and transcription start site of a major potato tuber protein gene. Nucleic Acids Res. 1986;14(11):4625-38.
[42]
Jefferson R, Goldsbrough A, Bevan M. Transcriptional regulation of a patatin-1 gene in potato. Plant Mol Biol. 1990;14(6):995-1006.
[43]
Landschulz WH, Johnson PF, McKnight SL. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science. 1988;240(4860):1759-64.
[44]
Busch SJ, Sassone-Corsi P. Dimers, leucine zippers and DNA-binding domains. Trends Genet. 1990;6(2):36-40.
[45]
Vinson CR, Sigler PB, McKnight SL. Scissors-grip model for DNA recognition by a family of leucine zipper proteins. Science. 1989;246(4932):911-6.
[46]
Schindler U, Cashmore AR. Photoregulated gene expression may involve ubiquitous DNA binding proteins. EMBO J. 1990;9(11):3415-27.
[47]
Fromm H, Katagiri F, Chua NH. The tobacco transcription activator TGA1a binds to a sequence in the 5' upstream region of a gene encoding a TGA1a-related protein. Mol Gen Genet. 1991;229(2):181-8.
[49]
Serfling E. Autoregulation--a common property of eukaryotic transcription factors? Trends Genet. 1989;5(5):131-3.
[50]
van der Krol AR, Chua NH. The basic domain of plant B-ZIP proteins facilitates import of a reporter protein into plant nuclei. Plant Cell. 1991;3(7):667-75.
[51]
Oeda K, Salinas J, Chua NH. A tobacco bZip transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J. 1991;10(7):1793-802.
[52]
Guiltinan MJ, Marcotte WR Jr, Quatrano RS. A plant leucine zipper protein that recognizes an abscisic acid response element. Science. 1990;250(4978):267-71.
[53]
Tabata T, Takase H, Takayama S, Mikami K, Nakatsuka A, Kawata T, Nakayama T, Iwabuchi M. A protein that binds to a cis-acting element of wheat histone genes has a leucine zipper motif. Science. 1989;245(4921):965-7.
[54]
Singh K, Dennis ES, Ellis JG, Llewellyn DJ, Tokuhisa JG, Wahleithner JA, Peacock WJ. OCSBF-1, a maize ocs enhancer binding factor: isolation and expression during development. Plant Cell. 1990;2(9):891-903.
[55]
Hartings H, Maddaloni M, Lazzaroni N, Di Fonzo N, Motto M, Salamini F, Thompson R. The O2 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO J. 1989;8(10):2795-801.
[56]
Schmidt RJ, Burr FA, Aukerman MJ, Burr B. Maize regulatory gene opaque-2 encodes a protein with a "leucine-zipper" motif that binds to zein DNA. Proc Natl Acad Sci U S A. 1990;87(1):46-50.