Biopolym. Cell. 1989; 5(6):46-52.
Структура та функції біополімерів
Визначення напрямків алкілування ДНК похідними етиленіміну і виділення модифікованих основ
- Інститут молекулярної біології і генетики АН УСРС
Київ, СРСР
Abstract
У роботі досліджували напрямки алкілування пуринових підстав у вільному вигляді та у складі ДНК етиленіміну (ЕІ), моноазиридиндиэтилфосфатом і ТіоТЕФ. Методом обернено-фазової ВЕРХ проведено поділ продуктів алкілування. При зіставленні спектрів поглинання виділених алкілованих підстав з вивченими раніше встановлено, що алкілування аденіну відбувається в основному по N1, N3, N9, а гуаніну-по N1, N7 та N9 положенням гетероциклу. З кислотних гідролізатів Алкілуючі про ванну різними агентами ДНК виділені I-й 3-алкіладенін, 6-алкіламінопурін, I-й 7-алкілгуанін. Обговорюється залежність фізико-хімічних властивостей такої ДНК від напрямків алкілування пуринових підстав.
Повний текст: (PDF, російською)
References
[1]
Loveless A. Genetic and allied effects of alkylating agents. London, Butterworths, 1966; 270 p.
[2]
Ross WCJ. Biological alkylating agents. London, Butterworth, 1962; 232 p.
[3]
Giller SA, Lidak MYu, Lukevits EYa. Chemical of anticancer agents. Chemotherapy of malignant tumors. Moscow, Medicine, 1977; 10-60.
[4]
Anticancer drug BENZOTEF. Ed. PV Rodionov. Kyiv, Vyshcha shkola, 1973; 174 P.
[5]
Sukhodub LF, Shekovskii VS, Kosevich MV, Piatigorskaia TL, Zhilkova OIu. Mass spectrometric study of thiophosphamide interaction with nucleic acid bases. Dokl Akad Nauk SSSR. 1985;283(3):714-6.
[6]
Serebryanyi AM, Andrievsky GV, Becker AR, Sibeldina LA, Sharova OL. The structure of the Products of nucleotides and DNA modification by ethylenimine and thio-tePa. Russian Journal of Bioorganic Chemistry. 1987; 13(6):786-92.
[7]
Piatigorskaia GL, Zhilkova OIu, Murav'eva LM, Sukhodub LF. DNA interaction with the antitumor agent thiophosphamide. Mol Biol (Mosk). 1986;20(2):423-9.
[8]
Soloviyan VT, Potopal’skiy AI, Tkachuk ZYu. Degree of alkylation and Physico-chemical properties of the modified by tiophosphamide DNA. Molekularnaya biologiya (Kiev). 1984; Is. 37:44-50.
[9]
Patskovsky YuV, Voloshchuk TP, Potopalsky AI, Tkachuk ZYu. Alkylation of DNA: Physico-chemical properties of DNA, modified thioPhosPhamide and monoetyleneimine diethyl ester of phosphoric acid. Cell and viruses macromolecules. Kyiv, Naukova Dumka, 1986:40-47.
[10]
Shved AD, Solomko AP, Potopal’skiy AI, Ivasivka SV, Grishchenko AM, Aleksandrov YuN, Tkachuk ZYu, Tsegel’skiy AA, Krylova EL, Tkachuk LV, Semernikova LI. Structural and functional features of modified nucleic acids. Molekularnaya biologiya (Kiev). 1980; Is. 26:64-78.
[11]
Lidak MYu, Giller SA, Medne AYa. The synthesis of Thiotepha. Thiotepha. Riga, Akad nauk LatvSSR Press, 1961; 5-8.
[12]
Grechkin IP. OrganoPhosPhorus derivatives of ethyleneimine. 1. Interaction of ethyleneimine with dialkylphosphoric acid chloranhydrides. Izv akad nauk SSSR. 1956; (5):538-543
[13]
Patskovsky YuV, Voloshchuk TP, Potopalsky AI. Some ProPerties of the reaction between polynucleotides and thiophosphamide. Biopolym. Cell. 1989; 5(5):64-70.
[14]
Singer B. The chemical effects of nucleic acid alkylation and their relation to mutagenesis and carcinogenesis. Prog Nucleic Acid Res Mol Biol. 1975;15(0):219-84.
[15]
Pyatigorskaya TL, Zhilkova OYu, Arkhangelova NM, et al. Study of thioPhosPhamide stability in aqueous and aqueous salt solutions. Khim-farm zh. 1984; 2):343-349.
[16]
Hemminki K, Ludlum DB. Covalent modification of DNA by antineoplastic agents. J Natl Cancer Inst. 1984;73(5):1021-8.
[17]
Kochetkov NK, Budovskiy EI, Sverdlov ED, Simukova NA, Turchinskiy MF, Shibayev VN. Organic chemistry of nucleic acids. Moscow, Khimiya, 1970; 720 P.
[18]
Price CC, Gaucher GM, Koneru P, Shibakawa R, Sowa JR, Yamaguchi M. Relative reactivities for monofunctional nitrogen mustard alkylation of nucleic acid components. Biochim Biophys Acta. 1968;166(2):327-59.