Biopolym. Cell. 2020; 36(2):87-98.
Огляди
Структурні та функціональні особливості аспарагінових протеаз базидіоміцетів
- Поліський державний університет
23, Дніпровська флотилія, Пінськ, Республіка Білорусь, 225710
Abstract
Величезне різноманіття грибних протеаз та специфіка їхньої дії широко використовуються завдяки їхнім фізіологічним та біотехнологічним властивостям. Ці ферменти використовуються в біотехнології, головним чином у харчовій, шкіряній промисловості, у виробництві миючих засобів, в процесах екологічної біоремедіації та для отримання терапевтичних пептидів, що знаходять застосування в якості медичних препаратів. Цей огляд охоплює різні аспекти аспарагінових протеаз базидіоміцетів, включаючи джерела іх отримання, продукцію, структурні особливості, фізико-хімічні властивості та їхне різноманітне застосування.
Keywords: протеолітичні ферменти, фізичні і хімічні властивості
Повний текст: (PDF, англійською)
References
[1]
Germano S, Pandey A, Osaku CA. Characterization and stability of proteases from Penicilliumsp. produced by solid-state fermentation. EnzymMicrob Technol. 2003; 32:246-51.
[3]
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol. 1998; 62: 597-635.
[4]
Sumantha A, Larroche C, Pandey A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol. 2006; 44 (2): 211-20.
[5]
Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, Sannia G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotusostreatus. Appl Environ Microbiol. 2001; V. 67: 2754-59.
[6]
Faraco V, Palmieri G, Festa G, Monti M, Sannia G, Giardina P. A new subfamily of fungal subtilases: structural and functional analysis of a Pleurotus ostreatus member. Microbiology. 2005;151(Pt 2):457-66
[7]
Shin HH, Choi HS. Purification and characterization of cysteine protease from Pleurotusostreatus. Biosci Biotechnol Biochem. 1998; V. 62: 1416-18.
[8]
Denisova NP. Nature and biological role of basidial fungi proteinases. Mycol Phytopathol. 1984; 18: 116-21.
[9]
Terashita T, Inoue T, Nakaie Y, Yoshikawa K, Shishi- yama J. Isolation and characterization of extra- and intra-cellular metal proteinases produced in the spawnrunning process of Hypsizygusmarmoreus. Mycoscience. 1997; 38: 243-45.
[10]
Morozova EN, Falina NN, Denisova NP, Barkova LV, Psurtseva NV, Samartsev MA, Shitova VA. Analysis of the component composition and substrate specificity of a fibrinolytic drug from the fungus Flammulinavelutipes. Biokhimia. 1982; 47: 1181-85.
[11]
Choi HS, Sa YS. Fibrinolytic and antithrombotic protease from Ganodermalucidum. Mycologia. 2000;92(3):545-52.
[12]
Terashita T, Oda K, Kono M, Murao S. Purification and some properties of metal proteinases from Lentinusedodes. Agric Biol Chem. 1985; 49(8):2293-300.
[13]
Dohmae N, Hayashi K, Miki K, Tsumuraya Y, Hashimo Y. Purification and characterization of intracellular proteinases in Pleurotusostreatus fruiting bodies. Biosci Biotechnol Biochem. 1995; 59:2074-80.
[14]
Choi HS, Shin HH. Purification and partial characterization of a fibrinolytic protease in Pleurotusostreatus. Mycologia. 1998; 90:674-79.
[15]
Kobayashi H, Kasamo K. Crystallization and preliminary X-ray diffraction studies of aspartic proteinase from Irpexlacteus. J Mol Biol. 1992; 226:1291-93.
[16]
Kobayashi H, Kusakabe I, Murakami K. Purification and characterization of a pepstatin-insensitive carboxyl proteinase from Polyporustulipiferae (Irpexlacteus). Agric Biol Chem 1985; 49(8):2393-7.
[17]
Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, Sannia G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotusostreatus. Appl Environ Microbiol. 2001; 67(6):2754-59.
[18]
Akhmedova ZR. Cellulolytic, xylanolitic and lignolytic enzymes of the fungus Pleurotusostreatus. Prikl Biochim Microbiol. 1994; 30:42-8.
[19]
Denisova NP. Proteolytic enzymes of basidial fungi, taxonomic and ecological aspects of their study. Thesis Doc Biol sci. 1991; 31.
[20]
Veerapandian B, Cooper JB, Sali A, Blundell TL, Rosati RL, Dominy BW, Damon DB, Hoover DJ. Direct obser-vation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinase. Protein Sci. 1992;1(3) 322-8.
[21]
Andreeva NS, James MN. Structure and function of aspartic proteinases. N.Y.: Plenum Press. 1992; 39-45.
[22]
Antonov VK, Ginodman LM, Rumsh LD, Kapitannikov YV, Barshevskaja TN, Yavashev LP, Gurova AG, Volkova LI. Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem. 1981; 117:195-200.
[23]
Davies DR.The structure and function of the aspartic proteinases. Annu Rev Biophys Chem. 1990; 19:189-215.
[24]
Andreeva NS, Rumsh LD. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Science. 2001; 10(12):2439-50.
[25]
Piana S, Carloni P. Impact of genetic variation on three dimensional structure and function of proteins. Proteins: Structure, Function, Genetic. 2000; 39:26-36.
[26]
Avtonomova AV, Krasnopol'skaia LM, Maksimov VN. [Optimization of nutrient medium for submerged cultivation of Ganoderma lucidum (Curt.: Fr.) P. Karst]. Mikrobiologiia. 2006;75(2):186-92. Russian.
[27]
Kalizs HM, Wood DA, Moore D. Production, regulation and release of extracellular proteinase activity in basidi-omycete fungi. Trans Br Mycol Soc. 1987; 88:221-227.
[28]
Dunaevsky YE, Matveeva AR, Belyakova GA, Belozersky MA. Degradation of protein substrates by xylotrophicba-sidiomycetes. Microbiology. 2006; 75:46-51.
[29]
Claverie-MartÌn F, Vega-Hernàndez MC, Aspartic proteases used in cheese making. Industrial Enzyme. 2007: 207-19.
[30]
Van SSC, Warnock NI, Schmidt S. Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking. J Agricult Food Chem. 2013; 61, 40, 9705–11.
[31]
Jacob M, Jaros D, Rohm H. Recent advances in milk clotting enzymes. Int J Dairy Technol. 2011; 64 (1):14-33.
[32]
Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial pro-teases. Microbiol Mol Biol Rev. 1998; 62(3):597-63.
[33]
Theron LW, Divol B. Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol. 2014; 98(21):8853-68.
[34]
Cutfield SM, Dodson EJ, Anderson BF. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure. 1995; 3(11):1261-71.
[35]
Kobayashi H, Kim H. Characterization of aspartic proteinase from basidiomycete, Laetiporus sulfureus. Food SciTechnol Res. 2003; 9:30-34.
[36]
Gershkovich AA, Kibirev VK. Khromogennye i fluorogennye peptidnye substraty proteoliticheskikh fermentov [Chromogenic and fluorogenic peptide substrates of proteolytic enzymes]. Bioorg Khim. 1988;14(11):1461-88. Russian.
[37]
D'jakonova GV. The study of some physico-chemical properties of milk-clotting enzymes of oyster mushroom. 03.01.04 VAK RF, Kazan state University, Rostov-on-don. 2010; 44.
[38]
Lebedeva G, Proskuryakov M. Purification and characterization of milkclotting enzymes from oyster mushroom (Pleurotusostreatus (Fr.) Kumm). Applied Biochemistry and Microbiology. 2009; 45(6):623-625.
[39]
Dmitrieva TA, Kolesnikov BA, Shamtsyan MM. Screening of producers of milk-converting enzymes among cultures of higher basidiomycetes. Nat tech Sci. 2009; 3(41):145-7.
[40]
Chemerys OV, Boyko MI. The milk coagulating activity of some basidial wood-destroying fungi. Donetsk readings. 2016; 229-32.
[41]
Sakovich, VV, Grusha AM, Zhernossekov DD.Guidelines for obtaining a drug with milk-clotting activity from Pleurotusostreatus.Vet J Belarus. 2018; 63-67.
[42]
Sakovich VV, Stohniy YM, Zhernossekov DD, Rebriev AV, Korolova DS, MarunychRYu, Chernyshenko VO.Metalloprotease from the cultural liquid of Pleurotusosreatus. Biotechnologia Acta. 2019; 12(6):35-45.
[43]
Kudryavtseva OA, Dunaevsky YE, Kamzolkina V, Belozersky MA. Proteolytic enzymes of fungi: features of extracellular proteases of xylotrophicbasidiomycetes. Microbiology. 2008; 77:725-37.
[44]
Chemeris OV, Rashevsky VV, Boyko MI. Milk-curdling activity of some basidial wood-destroying fungi. Problems of ecology and nature protection of the technogenic region. 2016; 1(2):77-82.
[45]
Shpirnaya IA, Shlyapnikova SV, Tsvetkov VO, Ibragimov RI. Milk-clotting activity of basidial fungi enzymes. Reports of the Bashkir University. 2016; 1(1):63-67.
[46]
ShlyapnikovaSV, BatyrovaER, TsvetkovVO, ShpirnayaIA.The study of milk clotting activity of the enzymes of bracket-fungus. Proceedings of the Ufa scientific center of the Russian Academy of Sciences. 2017; 3(1):228-232.
[47]
Shlyapnikova SV, Batyrova ER. Features of milk coagulation: rennet enzyme preparation and its analogues. BIOmics. 2017; 9(1):33-41.
[48]
Belova NV, Shamolina II. Some promising areas of biotechnology of basidiomycetes. Mycol Phytopathol. 2013; 47(2):73-82.
[49]
Sorokin SS. Tromboliticaskie and fibrinolytic properties of basidiomycetes. Traditions and Innovations. 2017; 270.
[50]
Efremenkova OV. Antibiotics for basidial fungi. Advances in medical Mycology. 2018; 18:240-5.
[51]
Tsivileva OM, Perfileva AI, Pavlova AG. Antibacterial potential of a biomaterial of fungal origin with a low content of biometals. Methods of computer diagnostics in biology and medicine. 2018;153-6.