Biopolym. Cell. 2020; 36(2):87-98.
Reviews
Structural and functional peculiarities of aspartic proteases of basidiomycetes
1Sakovich V. V.
  1. Polessky State University
    23, Dneprovskoy flotilii, Pinsk, Republic of Belarus, 225710

Abstract

The vast diversity of fungal proteases and the specificity of their action have attracted attention in attempts to exploit their physiological and biotechnological applications. These enzymes are widely used in biotechnology, mainly in food, leather, and detergent industries, in ecological bioremediation processes and to produce therapeutic peptides. This review covers various aspects of aspartic proteases from basidiomycetes including sources, production, structural peculiarities, physicochemical properties and their diverse applications.
Keywords: Proteolytic enzymes, physical and chemical properties

References

[1] Germano S, Pandey A, Osaku CA. Characterization and stability of proteases from Penicilliumsp. produced by solid-state fermentation. EnzymMicrob Technol. 2003; 32:246-51.
[2] Rawlings ND, Barrett AJ. Evolutionary families of peptidases. Biochem J.1993;290 (Pt1):205-18.
[3] Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial proteases. Microbiol Mol Biol. 1998; 62: 597-635.
[4] Sumantha A, Larroche C, Pandey A. Microbiology and industrial biotechnology of food-grade proteases: a perspective. Food Technol Biotechnol. 2006; 44 (2): 211-20.
[5] Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, Sannia G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotusostreatus. Appl Environ Microbiol. 2001; V. 67: 2754-59.
[6] Faraco V, Palmieri G, Festa G, Monti M, Sannia G, Giardina P. A new subfamily of fungal subtilases: structural and functional analysis of a Pleurotus ostreatus member. Microbiology. 2005;151(Pt 2):457-66
[7] Shin HH, Choi HS. Purification and characterization of cysteine protease from Pleurotusostreatus. Biosci Biotechnol Biochem. 1998; V. 62: 1416-18.
[8] Denisova NP. Nature and biological role of basidial fungi proteinases. Mycol Phytopathol. 1984; 18: 116-21.
[9] Terashita T, Inoue T, Nakaie Y, Yoshikawa K, Shishi- yama J. Isolation and characterization of extra- and intra-cellular metal proteinases produced in the spawnrunning process of Hypsizygusmarmoreus. Mycoscience. 1997; 38: 243-45.
[10] Morozova EN, Falina NN, Denisova NP, Barkova LV, Psurtseva NV, Samartsev MA, Shitova VA. Analysis of the component composition and substrate specificity of a fibrinolytic drug from the fungus Flammulinavelutipes. Biokhimia. 1982; 47: 1181-85.
[11] Choi HS, Sa YS. Fibrinolytic and antithrombotic protease from Ganodermalucidum. Mycologia. 2000;92(3):545-52.
[12] Terashita T, Oda K, Kono M, Murao S. Purification and some properties of metal proteinases from Lentinusedodes. Agric Biol Chem. 1985; 49(8):2293-300.
[13] Dohmae N, Hayashi K, Miki K, Tsumuraya Y, Hashimo Y. Purification and characterization of intracellular proteinases in Pleurotusostreatus fruiting bodies. Biosci Biotechnol Biochem. 1995; 59:2074-80.
[14] Choi HS, Shin HH. Purification and partial characterization of a fibrinolytic protease in Pleurotusostreatus. Mycologia. 1998; 90:674-79.
[15] Kobayashi H, Kasamo K. Crystallization and preliminary X-ray diffraction studies of aspartic proteinase from Irpexlacteus. J Mol Biol. 1992; 226:1291-93.
[16] Kobayashi H, Kusakabe I, Murakami K. Purification and characterization of a pepstatin-insensitive carboxyl proteinase from Polyporustulipiferae (Irpexlacteus). Agric Biol Chem 1985; 49(8):2393-7.
[17] Palmieri G, Bianco C, Cennamo G, Giardina P, Marino G, Monti M, Sannia G. Purification, characterization, and functional role of a novel extracellular protease from Pleurotusostreatus. Appl Environ Microbiol. 2001; 67(6):2754-59.
[18] Akhmedova ZR. Cellulolytic, xylanolitic and lignolytic enzymes of the fungus Pleurotusostreatus. Prikl Biochim Microbiol. 1994; 30:42-8.
[19] Denisova NP. Proteolytic enzymes of basidial fungi, taxonomic and ecological aspects of their study. Thesis Doc Biol sci. 1991; 31.
[20] Veerapandian B, Cooper JB, Sali A, Blundell TL, Rosati RL, Dominy BW, Damon DB, Hoover DJ. Direct obser-vation by X-ray analysis of the tetrahedral "intermediate" of aspartic proteinase. Protein Sci. 1992;1(3) 322-8.
[21] Andreeva NS, James MN. Structure and function of aspartic proteinases. N.Y.: Plenum Press. 1992; 39-45.
[22] Antonov VK, Ginodman LM, Rumsh LD, Kapitannikov YV, Barshevskaja TN, Yavashev LP, Gurova AG, Volkova LI. Studies on the mechanisms of action of proteolytic enzymes using heavy oxygen exchange. Eur J Biochem. 1981; 117:195-200.
[23] Davies DR.The structure and function of the aspartic proteinases. Annu Rev Biophys Chem. 1990; 19:189-215.
[24] Andreeva NS, Rumsh LD. Analysis of crystal structures of aspartic proteinases: on the role of amino acid residues adjacent to the catalytic site of pepsin-like enzymes. Protein Science. 2001; 10(12):2439-50.
[25] Piana S, Carloni P. Impact of genetic variation on three dimensional structure and function of proteins. Proteins: Structure, Function, Genetic. 2000; 39:26-36.
[26] Avtonomova AV, Krasnopol'skaia LM, Maksimov VN. [Optimization of nutrient medium for submerged cultivation of Ganoderma lucidum (Curt.: Fr.) P. Karst]. Mikrobiologiia. 2006;75(2):186-92. Russian.
[27] Kalizs HM, Wood DA, Moore D. Production, regulation and release of extracellular proteinase activity in basidi-omycete fungi. Trans Br Mycol Soc. 1987; 88:221-227.
[28] Dunaevsky YE, Matveeva AR, Belyakova GA, Belozersky MA. Degradation of protein substrates by xylotrophicba-sidiomycetes. Microbiology. 2006; 75:46-51.
[29] Claverie-MartÌn F, Vega-Hernàndez MC, Aspartic proteases used in cheese making. Industrial Enzyme. 2007: 207-19.
[30] Van SSC, Warnock NI, Schmidt S. Aspartic acid protease from Botrytis cinerea removes haze-forming proteins during white winemaking. J Agricult Food Chem. 2013; 61, 40, 9705–11.
[31] Jacob M, Jaros D, Rohm H. Recent advances in milk clotting enzymes. Int J Dairy Technol. 2011; 64 (1):14-33.
[32] Rao MB, Tanksale AM, Ghatge MS, Deshpande VV. Molecular and biotechnological aspects of microbial pro-teases. Microbiol Mol Biol Rev. 1998; 62(3):597-63.
[33] Theron LW, Divol B. Microbial aspartic proteases: current and potential applications in industry. Appl Microbiol Biotechnol. 2014; 98(21):8853-68.
[34] Cutfield SM, Dodson EJ, Anderson BF. The crystal structure of a major secreted aspartic proteinase from Candida albicans in complexes with two inhibitors. Structure. 1995; 3(11):1261-71.
[35] Kobayashi H, Kim H. Characterization of aspartic proteinase from basidiomycete, Laetiporus sulfureus. Food SciTechnol Res. 2003; 9:30-34.
[36] Gershkovich AA, Kibirev VK. Khromogennye i fluorogennye peptidnye substraty proteoliticheskikh fermentov [Chromogenic and fluorogenic peptide substrates of proteolytic enzymes]. Bioorg Khim. 1988;14(11):1461-88. Russian.
[37] D'jakonova GV. The study of some physico-chemical properties of milk-clotting enzymes of oyster mushroom. 03.01.04 VAK RF, Kazan state University, Rostov-on-don. 2010; 44.
[38] Lebedeva G, Proskuryakov M. Purification and characterization of milkclotting enzymes from oyster mushroom (Pleurotusostreatus (Fr.) Kumm). Applied Biochemistry and Microbiology. 2009; 45(6):623-625.
[39] Dmitrieva TA, Kolesnikov BA, Shamtsyan MM. Screening of producers of milk-converting enzymes among cultures of higher basidiomycetes. Nat tech Sci. 2009; 3(41):145-7.
[40] Chemerys OV, Boyko MI. The milk coagulating activity of some basidial wood-destroying fungi. Donetsk readings. 2016; 229-32.
[41] Sakovich, VV, Grusha AM, Zhernossekov DD.Guidelines for obtaining a drug with milk-clotting activity from Pleurotusostreatus.Vet J Belarus. 2018; 63-67.
[42] Sakovich VV, Stohniy YM, Zhernossekov DD, Rebriev AV, Korolova DS, MarunychRYu, Chernyshenko VO.Metalloprotease from the cultural liquid of Pleurotusosreatus. Biotechnologia Acta. 2019; 12(6):35-45.
[43] Kudryavtseva OA, Dunaevsky YE, Kamzolkina V, Belozersky MA. Proteolytic enzymes of fungi: features of extracellular proteases of xylotrophicbasidiomycetes. Microbiology. 2008; 77:725-37.
[44] Chemeris OV, Rashevsky VV, Boyko MI. Milk-curdling activity of some basidial wood-destroying fungi. Problems of ecology and nature protection of the technogenic region. 2016; 1(2):77-82.
[45] Shpirnaya IA, Shlyapnikova SV, Tsvetkov VO, Ibragimov RI. Milk-clotting activity of basidial fungi enzymes. Reports of the Bashkir University. 2016; 1(1):63-67.
[46] ShlyapnikovaSV, BatyrovaER, TsvetkovVO, ShpirnayaIA.The study of milk clotting activity of the enzymes of bracket-fungus. Proceedings of the Ufa scientific center of the Russian Academy of Sciences. 2017; 3(1):228-232.
[47] Shlyapnikova SV, Batyrova ER. Features of milk coagulation: rennet enzyme preparation and its analogues. BIOmics. 2017; 9(1):33-41.
[48] Belova NV, Shamolina II. Some promising areas of biotechnology of basidiomycetes. Mycol Phytopathol. 2013; 47(2):73-82.
[49] Sorokin SS. Tromboliticaskie and fibrinolytic properties of basidiomycetes. Traditions and Innovations. 2017; 270.
[50] Efremenkova OV. Antibiotics for basidial fungi. Advances in medical Mycology. 2018; 18:240-5.
[51] Tsivileva OM, Perfileva AI, Pavlova AG. Antibacterial potential of a biomaterial of fungal origin with a low content of biometals. Methods of computer diagnostics in biology and medicine. 2018;153-6.