Biopolym. Cell. 2017; 33(4):243-255.
Структура та функції біополімерів
Білки-партнери субодиниці eEF1Bβ комплексу елонгації трансляції eEF1B в ядерній фракції клітин карциноми легені людини
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680 - Інститут біохімії і біофізики Польської академії наук
вул. Павінського, 5a, Варшава, Польща, 02-106
Abstract
Мета. Виявити нових білків-партнерів фактора трансляції eEF1Bβ в ядрі клітин карциноми легені. Методи. Білки-партнери eEF1Bβ, отримані з ядерного екстракту клітин А549 методом ко-імунопреципітації (co-IP), були ідентифіковані за допомогою высокоефективної рідинної хроматографії з тандемною мас-спектрометрією (LC-MS/MS). Подальше підтвердження білків-партнерів проводили із використанням опублікованих даних глобального, кількісного і динамічного картування субклітинної локалізації білків за допомогою програми Mapofthecell. Результати. 104 білки, які взаємодіють із eEF1Bβ в ядерній фракції клітин карциноми легені A549 були ідентифіковані мас-спектрометрією. Проміж цих білків, 9 партнерів eEF1Bβ були підтверджені даними із прецизійного субклітинного фракціонування. За допомогою функціонального аналізу ці білки-партнери можуть бути поділені на про-онкогенну і нейтральну/анти-онкогенну групи. Передбачено, що ці групи можуть бути просторово розділені в ракових клітинах людини. Висновки. Запропоновано, що eEF1Bβ може бути проміжною ланкою між онкогенною і нейтральною/пухлиносупресорною групами партнерів цього білка в ядрі ракових клітин. Розшифрування можливої ролі залучення eEF1Bβ до про-ракової або анти-раковими спільнот білкових партнерів цього білку може бути предметом подальших дослiджень.
Keywords: eEF1Bβ, білок-білкові взаємодії, клітини A549, ILF2, ILF3, HNRNPU, CELF1, DDX6, CCNT1, PA2G4, SPATS2L, USP39
Повний текст: (PDF, англійською)
References
[1]
Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics. 2012;9(1):71-83.
[2]
Novosylna AV, Timchenko AA, Tiktopulo EI, Serdyuk IN, Negrutskii BS, El’skaya AV. Characterization of physical properties of two isoforms of translation elongation factor 1A. Biopolym Cell. 2007; 23(5):386–90.
[3]
Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A. Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma. Eur J Clin Invest. 2011;41(3):269-76.
[4]
Veremieva M, Kapustian L, Khoruzhenko A, Zakharychev V, Negrutskii B, El'skaya A. Independent overexpression of the subunits of translation elongation factor complex eEF1H in human lung cancer. BMC Cancer. 2014;14:913.
[5]
Joseph P, Lei YX, Ong TM. Up-regulation of expression of translation factors--a novel molecular mechanism for cadmium carcinogenesis. Mol Cell Biochem. 2004;255(1-2):93-101.
[6]
Ogawa K, Utsunomiya T, Mimori K, Tanaka Y, Tanaka F, Inoue H, Murayama S, Mori M. Clinical significance of elongation factor-1 delta mRNA expression in oesophageal carcinoma. Br J Cancer. 2004;91(2):282-6.
[7]
Sinha P, Kohl S, Fischer J, Hütter G, Kern M, Köttgen E, Dietel M, Lage H, Schnölzer M, Schadendorf D. Identification of novel proteins associated with the development of chemoresistance in malignant melanoma using two-dimensional electrophoresis. Electrophoresis. 2000;21(14):3048-57.
[8]
Dignam JD, Lebovitz RM, Roeder RG. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 1983;11(5):1475-89.
[9]
Kang D, Gho YS, Kang C. Highly sensitive and fast protein detection with coomassie brilliant blue in sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Bull Korean Chem Soc. 2002; 23(11):1511–2.
[10]
Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498-504.
[11]
Itzhak DN, Tyanova S, Cox J, Borner GH. Global, quantitative and dynamic mapping of protein subcellular localization. Elife. 2016;5. pii: e16950.
[12]
Kapustian LM, Dadlez M, Negrutskii BS. Non-canonical interactions of the β subunit of the translation elongation complex eEF1B and analysis of their possible functional role. Biopolym Cell. 2016; 32(5):347–58.
[13]
Schmidt T, Knick P, Lilie H, Friedrich S, Golbik RP, Behrens SE. The properties of the RNA-binding protein NF90 are considerably modulated by complex formation with NF45. Biochem J. 2017;474(2):259-280.
[14]
Marchesini M, Ogoti Y, Fiorini E, Aktas Samur A, Nezi L, D'Anca M, Storti P, Samur MK, Ganan-Gomez I, Fulciniti MT, Mistry N, Jiang S, Bao N, Marchica V, Neri A, Bueso-Ramos C, Wu CJ, Zhang L, Liang H, Peng X, Giuliani N, Draetta G, Clise-Dwyer K, Kantarjian H, Munshi N, Orlowski R, Garcia-Manero G, DePinho RA, Colla S. ILF2 is a regulator of RNA splicing and dna damage response in 1q21-amplified multiple myeloma. Cancer Cell. 2017;32(1):88-100.e6.
[15]
Bi Y, Shen W, Min M, Liu Y. MicroRNA-7 functions as a tumor-suppressor gene by regulating ILF2 in pancreatic carcinoma. Int J Mol Med. 2017;39(4):900-906.
[16]
Cheng S, Jiang X, Ding C, Du C, Owusu-Ansah KG, Weng X, Hu W, Peng C, Lv Z, Tong R, Xiao H, Xie H, Zhou L, Wu J, Zheng S. Expression and critical role of interleukin enhancer binding factor 2 in hepatocellular carcinoma. Int J Mol Sci. 2016;17(8). pii: E1373.
[17]
Higuchi T, Todaka H, Sugiyama Y, Ono M, Tamaki N, Hatano E, Takezaki Y, Hanazaki K, Miwa T, Lai S, Morisawa K, Tsuda M, Taniguchi T, Sakamoto S. Suppression of microRNA-7 (miR-7) biogenesis by nuclear factor 90-nuclear factor 45 complex (NF90-NF45) controls cell proliferation in hepatocellular carcinoma. J Biol Chem. 2016;291(40):21074-21084.
[18]
Yin ZH, Jiang XW, Shi WB, Gui QL, Yu DF. Expression and clinical significance of ILF2 in gastric cancer. Dis Markers. 2017;2017:4387081.
[19]
Ni T, Mao G, Xue Q, Liu Y, Chen B, Cui X, Lv L, Jia L, Wang Y, Ji L. Upregulated expression of ILF2 in non-small cell lung cancer is associated with tumor cell proliferation and poor prognosis. J Mol Histol. 2015;46(4-5):325-35.
[20]
Masuda K, Kuwano Y, Nishida K, Rokutan K, Imoto I. NF90 in posttranscriptional gene regulation and microRNA biogenesis. Int J Mol Sci. 2013;14(8):17111-21.
[21]
Pei Y, Zhu P, Dang Y, Wu J, Yang X, Wan B, Liu JO, Yi Q, Yu L. Nuclear export of NF90 to stabilize IL-2 mRNA is mediated by AKT-dependent phosphorylation at Ser647 in response to CD28 costimulation. J Immunol. 2008;180(1):222-9.
[22]
Li X, Liu CX, Xue W, Zhang Y, Jiang S, Yin QF, Wei J, Yao RW, Yang L, Chen LL. Coordinated circRNA Biogenesis and Function with NF90/NF110 in Viral Infection. Mol Cell. 2017;67(2):214-227.e7.
[23]
Korrodi-Gregório L, Soto-Cerrato V, Vitorino R, Fardilha M, Pérez-Tomás R. From Proteomic Analysis to Potential Therapeutic Targets: Functional Profile of Two Lung Cancer Cell Lines, A549 and SW900, Widely Studied in Pre-Clinical Research. PLoS One. 2016;11(11):e0165973.
[24]
Yang F, Huo XS, Yuan SX, Zhang L, Zhou WP, Wang F, Sun SH. Repression of the long noncoding RNA-LET by histone deacetylase 3 contributes to hypoxia-mediated metastasis. Mol Cell. 2013;49(6):1083-96.
[25]
Ye J, Beetz N, O'Keeffe S, Tapia JC, Macpherson L, Chen WV, Bassel-Duby R, Olson EN, Maniatis T. hnRNP U protein is required for normal pre-mRNA splicing and postnatal heart development and function. Proc Natl Acad Sci U S A. 2015;112(23):E3020-9.
[26]
Polo SE, Blackford AN, Chapman JR, Baskcomb L, Gravel S, Rusch A, Thomas A, Blundred R, Smith P, Kzhyshkowska J, Dobner T, Taylor AM, Turnell AS, Stewart GS, Grand RJ, Jackson SP. Regulation of DNA-end resection by hnRNPU-like proteins promotes DNA double-strand break signaling and repair. Mol Cell. 2012;45(4):505-16.
[27]
Weidensdorfer D, Stöhr N, Baude A, Lederer M, Köhn M, Schierhorn A, Buchmeier S, Wahle E, Hüttelmaier S. Control of c-myc mRNA stability by IGF2BP1-associated cytoplasmic RNPs. RNA. 2009;15(1):104-15.
[28]
Yates TM, Vasudevan PC, Chandler KE, Donnelly DE, Stark Z, Sadedin S, Willoughby J; Broad Center for Mendelian Genomics; DDD study, Balasubramanian M. De novo mutations in HNRNPU result in a neurodevelopmental syndrome. Am J Med Genet A. 2017;173(11):3003-3012.
[29]
Li S, Mi L, Yu L, Yu Q, Liu T, Wang GX, Zhao XY, Wu J, Lin JD. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc Natl Acad Sci U S A. 2017;114(34):E7111-E7120.
[30]
Deng W, Yan M, Yu T, Ge H, Lin H, Li J, Liu Y, Geng Q, Zhu M, Liu L, He X, Yao M. Quantitative proteomic analysis of the metastasis-inhibitory mechanism of miR-193a-3p in non-small cell lung cancer. Cell Physiol Biochem. 2015;35(5):1677-88.
[31]
Yu TX, Gu BL, Yan JK, Zhu J, Yan WH, Chen J, Qian LX, Cai W. CUGBP1 and HuR regulate E-cadherin translation by altering recruitment of E-cadherin mRNA to processing bodies and modulate epithelial barrier function. Am J Physiol Cell Physiol. 2016;310(1):C54-65.
[32]
Bohjanen PR, Moua ML, Guo L, Taye A, Vlasova-St Louis IA. Altered CELF1 binding to target transcripts in malignant T cells. RNA. 2015;21(10):1757-69.
[33]
Chang KT, Cheng CF, King PC, Liu SY, Wang GS. CELF1 Mediates Connexin 43 mRNA Degradation in Dilated Cardiomyopathy. Circ Res. 2017;121(10):1140-1152.
[34]
Bai Z, Chai XR, Yoon MJ, Kim HJ, Lo KA, Zhang ZC, Xu D, Siang DTC, Walet ACE, Xu SH, Chia SY, Chen P, Yang H, Ghosh S, Sun L. Dynamic transcriptome changes during adipose tissue energy expenditure reveal critical roles for long noncoding RNA regulators. PLoS Biol. 2017;15(8):e2002176.
[35]
Xia H, Chen D, Wu Q, Wu G, Zhou Y, Zhang Y, Zhang L. CELF1 preferentially binds to exon-intron boundary and regulates alternative splicing in HeLa cells. Biochim Biophys Acta. 2017;1860(9):911-921.
[36]
Katoh T, Hojo H, Suzuki T. Destabilization of microRNAs in human cells by 3' deadenylation mediated by PARN and CUGBP1. Nucleic Acids Res. 2015;43(15):7521-34.
[37]
Gu L, Wang H, Wang J, Guo Y, Tang Y, Mao Y, Chen L, Lou H, Ji G. Reconstitution of HuR-inhibited CUGBP1 expression protects cardiomyocytes from acute myocardial infarction-induced injury. antioxid redox signal. 2017;27(14):1013-1026.
[38]
Chaudhury A, Cheema S, Fachini JM, Kongchan N, Lu G, Simon LM, Wang T, Mao S, Rosen DG, Ittmann MM, Hilsenbeck SG, Shaw CA, Neilson JR. CELF1 is a central node in post-transcriptional regulatory programmes underlying EMT. Nat Commun. 2016;7:13362.
[39]
Xia L, Sun C, Li Q, Feng F, Qiao E, Jiang L, Wu B, Ge M. CELF1 is up-regulated in glioma and promotes glioma cell proliferation by suppression of CDKN1B. Int J Biol Sci. 2015;11(11):1314-24.
[40]
House RP, Talwar S, Hazard ES, Hill EG, Palanisamy V. RNA-binding protein CELF1 promotes tumor growth and alters gene expression in oral squamous cell carcinoma. Oncotarget. 2015;6(41):43620-34.
[41]
Lewis K, Valanejad L, Cast A, Wright M, Wei C, Iakova P, Stock L, Karns R, Timchenko L, Timchenko N. RNA binding protein cugbp1 inhibits liver cancer in a phosphorylation-dependent manner. Mol Cell Biol. 2017;37(16). pii: e00128-17.
[42]
Jiao W, Zhao J, Wang M, Wang Y, Luo Y, Zhao Y, Tang D, Shen Y. CUG-binding protein 1 (CUGBP1) expression and prognosis of non-small cell lung cancer. Clin Transl Oncol. 2013;15(10):789-95.
[43]
Wu LN, Xue YJ, Zhang LJ, Ma XM, Chen JF. Si-RNA mediated knockdown of CELF1 gene suppressed the proliferation of human lung cancer cells. Cancer Cell Int. 2013;13(1):115.
[44]
Gao C, Yu Z, Liu S, Xin H, Li X. Overexpression of CUGBP1 is associated with the progression of non-small cell lung cancer. Tumour Biol. 2015;36(6):4583-9. PubMed PMID: 25619475
[45]
Zhao J, Zhao Y, Xuan Y, Jiao W, Qiu T, Wang Z, Luo Y. Prognostic impact of CUG-binding protein 1 expression and vascular invasion after radical surgery for stage IB nonsmall cell lung cancer. Indian J Cancer. 2015;52 Suppl 2:e125-9.
[46]
Lu H, Yu Z, Liu S, Cui L, Chen X, Yao R. CUGBP1 promotes cell proliferation and suppresses apoptosis via down-regulating C/EBPα in human non-small cell lung cancers. Med Oncol. 2015;32(3):82.
[47]
Lin PC, Huang HD, Chang CC, Chang YS, Yen JC, Lee CC, Chang WH, Liu TC, Chang JG. Long noncoding RNA TUG1 is downregulated in non-small cell lung cancer and can regulate CELF1 on binding to PRC2. BMC Cancer. 2016;16:583.
[48]
Hadjivassiliou H, Rosenberg OS, Guthrie C. The crystal structure of S. cerevisiae Sad1, a catalytically inactive deubiquitinase that is broadly required for pre-mRNA splicing. RNA. 2014;20(5):656-69.
[49]
An Y, Yang S, Guo K, Ma B, Wang Y. Reduced USP39 expression inhibits malignant proliferation of medullary thyroid carcinoma in vitro. World J Surg Oncol. 2015;13(1):255.
[50]
Zhao Y, Zhang B, Lei Y, Sun J, Zhang Y, Yang S, Zhang X. Knockdown of USP39 induces cell cycle arrest and apoptosis in melanoma. Tumour Biol. 2016;37(10):13167-13176.
[51]
Yuan X, Sun X, Shi X, Jiang C, Yu D, Zhang W, Guan W, Zhou J, Wu Y, Qiu Y, Ding Y. USP39 promotes the growth of human hepatocellular carcinoma in vitro and in vivo. Oncol Rep. 2015;34(2):823-32.
[52]
Lin Z, Xiong L, Lin Q. Ubiquitin-specific protease 39 is overexpressed in human lung cancer and promotes tumor cell proliferation in vitro. Mol Cell Biochem. 2016;422(1-2):97-107.
[53]
Fraile JM, Manchado E, Lujambio A, Quesada V, Campos-Iglesias D, Webb TR, Lowe SW, López-Otín C, Freije JM. USP39 deubiquitinase is essential for KRAS oncogene-driven cancer. J Biol Chem. 2017;292(10):4164-4175. doi:
[54]
Huang JH, Ku WC, Chen YC, Chang YL, Chu CY. Dual mechanisms regulate the nucleocytoplasmic localization of human DDX6. Sci Rep. 2017;7:42853.
[55]
Wang Y, Arribas-Layton M, Chen Y, Lykke-Andersen J, Sen GL. DDX6 orchestrates mammalian progenitor function through the mRNA degradation and translation pathways. Mol Cell. 2015;60(1):118-30.
[56]
Lumb JH, Li Q, Popov LM, Ding S, Keith MT, Merrill BD, Greenberg HB, Li JB, Carette JE. DDX6 represses aberrant activation of interferon-stimulated genes. Cell Rep. 2017;20(4):819-831.
[57]
Biegel JM, Henderson E, Cox EM, Bonenfant G, Netzband R, Kahn S, Eager R, Pager CT. Cellular DEAD-box RNA helicase DDX6 modulates interaction of miR-122 with the 5' untranslated region of hepatitis C virus RNA. Virology. 2017;507:231-241.
[58]
Cho YJ, Kang W, Kim SH, Sa JK, Kim N, Paddison PJ, Kim M, Joo KM, Hwang YI, Nam DH. Involvement of DDX6 gene in radio- and chemoresistance in glioblastoma. Int J Oncol. 2016;48(3):1053-62.
[59]
Liu Z, Ahn JY, Liu X, Ye K. Ebp1 isoforms distinctively regulate cell survival and differentiation. Proc Natl Acad Sci U S A. 2006;103(29):10917-22.
[60]
Ko HR, Nguyen TL, Kim CK, Park Y, Lee KH, Ahn JY. P42 Ebp1 functions as a tumor suppressor in non-small cell lung cancer. BMB Rep. 2015;48(3):159-65.
[61]
Wang Y, Zhang P, Wang Y, Zhan P, Liu C, Mao JH, Wei G. Distinct Interactions of EBP1 Isoforms with FBXW7 Elicits Different Functions in Cancer. Cancer Res. 2017;77(8):1983-1996.
[62]
Min P, Li W, Zeng D, Ma Y, Xu D, Zheng W, Tang F, Chen J, Shi J, Hu H, Wang J, Yang D, Liu J, Zhang J, Zhang M. A single nucleotide variant in microRNA-1269a promotes the occurrence and process of hepatocellular carcinoma by targeting to oncogenes SPATS2L and LRP6. Bull Cancer. 2017;104(4):311-320.
[63]
Fan H, Zhao G, Ren D, Liu F, Dong G, Hou Y. Gender differences of B cell signature related to estrogen-induced IFI44L/BAFF in systemic lupus erythematosus. Immunol Lett. 2017;181:71-78.
[64]
Franco LC, Morales F, Boffo S, Giordano A. CDK9: A key player in cancer and other diseases. J Cell Biochem. 2017 Jul 19.
[65]
Zhang Y, Zhou L, Leng Y, Dai Y, Orlowski RZ, Grant S. Positive transcription elongation factor b (P-TEFb) is a therapeutic target in human multiple myeloma. Oncotarget. 2017;8(35):59476-59491.
[66]
Li Y, Guo Q, Zhang C, Huang Z, Wang T, Wang X, Wang X, Xu G, Liu Y, Yang S, Fan Y, Xiang R. Discovery of a highly potent, selective and novel CDK9 inhibitor as an anticancer drug candidate. Bioorg Med Chem Lett. 2017;27(15):3231-3237.
[67]
Narita T, Ishida T, Ito A, Masaki A, Kinoshita S, Suzuki S, Takino H, Yoshida T, Ri M, Kusumoto S, Komatsu H, Imada K, Tanaka Y, Takaori-Kondo A, Inagaki H, Scholz A, Lienau P, Kuroda T, Ueda R, Iida S. Cyclin-dependent kinase 9 is a novel specific molecular target in adult T-cell leukemia/lymphoma. Blood. 2017;130(9):1114-1124.
[68]
Mbonye U, Karn J. The molecular basis for human immunodeficiency virus latency. Annu Rev Virol. 2017;4(1):261-285.
[69]
Zhao Z, Tang KW, Muylaert I, Samuelsson T, Elias P. CDK9 and SPT5 proteins are specifically required for expression of herpes simplex virus 1 replication-dependent late genes. J Biol Chem. 2017;292(37):15489-15500.
[70]
Francisco JC, Dai Q, Luo Z, Wang Y, Chong RH, Tan YJ, Xie W, Lee GH, Lin C. Transcriptional Elongation Control of Hepatitis B Virus Covalently Closed Circular DNA Transcription by Super Elongation Complex and BRD4. Mol Cell Biol. 2017;37(19). pii: e00040-17.
[71]
Wang J, Li X, Wang L, Li J, Zhao Y, Bou G, Li Y, Jiao G, Shen X, Wei R, Liu S, Xie B, Lei L, Li W, Zhou Q, Liu Z. A novel long intergenic noncoding RNA indispensable for the cleavage of mouse two-cell embryos. EMBO Rep. 2016;17(10):1452-1470.
[72]
Bondarchuk TV, Shalak VF, Negrutskii BS, El’skaya AV. Leucine-zipper motif is responsible for self-association of translation elongation factor 1Bβ. Biopolym Cell. 2016;32(1):9–20.