Biopolym. Cell. 2005; 21(5):381-391.
Огляди
Шапероноподібні властивості компонентів білоксинтезувальної системи
1Лукаш Т. О., 1Турківська Г. В.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Розглянуто і проаналізовано роботи, присвячені дослідженню шапероноподібних властивостей рибосом та окремих білкових факторів трансляції. Крім участі у біосинтезі білка, про- і еукаріотні рибосоми, фактори елонгації EF1А, EF2, еЕА1А та фактор ініціації IF2 здатні відновлювати активність частково денатурованих ферментів та захищати їх від денатурації. Передбачається, що завдяки шапероноподібним властивостям перелічені компоненти білок­ синтезувальної системи можуть брати участь у фолдингу чи ренатурації білків та підтримувати їхню продуктивну конформацію у цитоплазмі клітин
Keywords: молекулярні шаперони, фолдинг, білоксинтезувальна система, рибосоми, білкові фактори трансляції

References

[1] Hendrick JP, Hartl FU. Molecular chaperone functions of heat-shock proteins. Annu Rev Biochem. 1993;62:349-84. Review.
[2] Dobson CM, Ptitsyn OB. Folding and binding: The biological consequences of physical principles. Curr Opin Struct Biol. 1999;9(1):89–91.
[3] Ellis RJ, Hartl FU. Principles of protein folding in the cellular environment. Curr Opin Struct Biol. 1999;9(1):102-10.
[4] Fink AL. Chaperone-mediated protein folding. Physiol Rev. 1999;79(2):425-49.
[5] Wickner S, Maurizi MR, Gottesman S. Posttranslational quality control: folding, refolding, and degrading proteins. Science. 1999;286(5446):1888-93.
[6] Fedorov AN, Friguet B, Djavadi-Ohaniance L, Alakhov YB, Goldberg ME. Folding on the ribosome of Escherichia coli tryptophan synthase beta subunit nascent chains probed with a conformation-dependent monoclonal antibody. J Mol Biol. 1992;228(2):351-8.
[7] Kudlicki W, Odom OW, Kramer G, Hardesty B. Activation and release of enzymatically inactive, full-length rhodanese that is bound to ribosomes as peptidyl-tRNA. J Biol Chem. 1994;269(24):16549-53.
[8] Fedorov AN, Baldwin TO. Cotranslational protein folding. J Biol Chem. 1997;272(52):32715-8.
[9] Hardesty B, Tsalkova T, Kramer G. Co-translational folding. Curr Opin Struct Biol. 1999;9(1):111-4.
[10] Johnson AE. The co-translational folding and interactions of nascent protein chains: a new approach using fluorescence resonance energy transfer. FEBS Lett. 2005;579(4):916-20.
[11] Baram D, Yonath A. From peptide-bond formation to cotranslational folding: dynamic, regulatory and evolutionary aspects. FEBS Lett. 2005;579(4):948-54.
[12] Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science. 2000;289(5481):920-30.
[13] Das B, Chattopadhyay S, Das Gupta C. Reactivation of denatured fungal glucose 6-phosphate dehydrogenase and E. coli alkaline phosphatase with E. coli ribosome. Biochem Biophys Res Commun. 1992;183(2):774-80.
[14] Chattopadhyay S, Das B, Bera AK, Dasgupta D, Dasgupta C. Refolding of denatured lactate dehydrogenase by Escherichia coli ribosomes. Biochem J. 1994;300 ( Pt 3):717-21.
[15] Das B, Chattopadhyay S, Bera AK, Dasgupta C. In vitro protein folding by ribosomes from Escherichia coli, wheat germ and rat liver: the role of the 50S particle and its 23S rRNA. Eur J Biochem. 1996;235(3):613-21.
[16] Kudlicki W, Coffman A, Kramer G, Hardesty B. Ribosomes and ribosomal RNA as chaperones for folding of proteins. Fold Des. 1997;2(2):101-8.
[17] Ivanov LL, Kovalenko MI, Turkovskaia GV, El'skaia AV. [Structure-functional properties of eukaryotic aminoacyl-tRNA synthetase]. Biokhimiia. 1992;57(8):1123-41. Review. Russian.
[18] Mirande M. Aminoacyl-tRNA synthetase family from prokaryotes and eukaryotes: structural domains and their implications. Prog Nucleic Acid Res Mol Biol. 1991;40:95-142.
[19] Pailliez JP, Waller JP. Phenylalanyl-tRNA synthetases from sheep liver and yeast. Correlation between net charge and binding to ribosomes. J Biol Chem. 1984;259(24):15491-6.
[20] Turkovskaya HV, Belyanskaya LL, Kovalenko MI, El'skaya AV. Renaturation of rabbit liver aminoacyl-tRNA synthetases by 80S ribosomes. Int J Biochem Cell Biol. 1999;31(7):759-68.
[21] Lukash TO, Turkovskaya GV, El'skaya AV. Restoration of the activity of higler eukaryotic aminoacyl-tRNA synthetases and their stabilization in the presence of ribosomes. Biopolym Cell. 2004; 20(4):316-20.
[22] Sana Sara, Ivanov LL, Turkovskaya GV, Martinkus ZP, Kovalenko MI, El'skaya AV. Effect of ribosomes on the thermostability of rabbit liver aminoacyl-tRNA synthetases. Biopolym Cell. 1992; 8(3):6-9.
[23] Negrutskii BS, El'skaya AV. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling. Prog Nucleic Acid Res Mol Biol. 1998;60:47-78.
[24] Yang F, Demma M, Warren V, Dharmawardhane S, Condeelis J. Identification of an actin-binding protein from Dictyostelium as elongation factor 1a. Nature. 1990;347(6292):494-6.
[25] Shiina N, Gotoh Y, Kubomura N, Iwamatsu A, Nishida E. Microtubule severing by elongation factor 1 alpha. Science. 1994;266(5183):282-5.
[26] Kudlicki W, Coffman A, Kramer G, Hardesty B. Renaturation of rhodanese by translational elongation factor (EF) Tu. Protein refolding by EF-Tu flexing. J Biol Chem. 1997;272(51):32206-10.
[27] Caldas TD, El Yaagoubi A, Richarme G. Chaperone properties of bacterial elongation factor EF-Tu. J Biol Chem. 1998;273(19):11478-82.
[28] Lee GJ, Pokala N, Vierling E. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J Biol Chem. 1995;270(18):10432-8.
[29] Bhadula SK, Elthon TE, Habben JE, Helentjaris TG, Jiao S, Ristic Z. Heat-stress induced synthesis of chloroplast protein synthesis elongation factor (EF-Tu) in a heat-tolerant maize line. Planta. 2001;212(3):359-66.
[30] Rao D, Momcilovic I, Kobayashi S, Callegari E, Ristic Z. Chaperone activity of recombinant maize chloroplast protein synthesis elongation factor, EF-Tu. Eur J Biochem. 2004;271(18):3684-92.
[31] Caldas T, Laalami S, Richarme G. Chaperone properties of bacterial elongation factor EF-G and initiation factor IF2. J Biol Chem. 2000;275(2):855-60.
[32] Hotokezaka Y, Tobben U, Hotokezaka H, Van Leyen K, Beatrix B, Smith DH, Nakamura T, Wiedmann M. Interaction of the eukaryotic elongation factor 1A with newly synthesized polypeptides. J Biol Chem. 2002;277(21):18545-51.
[33] Lukash TO, Turkovskaya GV, Negrutskii BS, Elskaya AV. Renaturation of phenylalanyl-tRNA synlhetase by translation elongation factor eEF1A. Biopolym Cell. 2003; 19(4):350-4.
[34] Lukash TO, Turkivska HV, Negrutskii BS, El'skaya AV. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases. Int J Biochem Cell Biol. 2004;36(7):1341-7.
[35] Negrutskii BS, Budkevich TV, Shalak VF, Turkovskaya GV, El'Skaya AV. Rabbit translation elongation factor 1 alpha stimulates the activity of homologous aminoacyl-tRNA synthetase. FEBS Lett. 1996;382(1-2):18-20.
[36] Petrushenko ZM, Budkevich TV, Shalak VF, Negrutskii BS, El'skaya AV. Novel complexes of mammalian translation elongation factor eEF1A.GDP with uncharged tRNA and aminoacyl-tRNA synthetase. Implications for tRNA channeling. Eur J Biochem. 2002;269(19):4811-8.
[37] Futernyk PV, Pogribna AP, Petrushenko ZM, Negrutski BS, El'skaya GV. Investigation of the complexes of elongation factor 1A with tRNASer and seryl-tRNA synthetase. Biopolym Cell. 2004; 20(1-2):17-23.
[38] Carias JR, Mouricout M, Quintard B, Thomes JC, Julien R. Leucyl-tRNA and arginyl-tRNA synthetases of wheat germ: inactivation and ribosome effects. Eur J Biochem. 1978;87(3):583-90.
[39] Iborra F, Dorizzi M, Labouesse J. Tryptophanyl-transfer ribonucleic-acid synthetase from beef pancreas. Ligand binding and dissociation equilibrium between the active dimeric and inactive monomeric structures. Eur J Biochem. 1973;39(1):275-82.
[40] Kern D, Gieg? R, Ebel JP. Glycyl-tRNA synthetase from baker's yeast. Interconversion between active and inactive forms of the enzyme. Biochemistry. 1981;20(1):122-31.
[41] Kawakami M, Nishio K. Subunit structure and tRNA-binding properties of Bombyx mori Glycyl-tRNA synthetase. J Biochem. 1985;98(1):177-86.
[42] Chuang SM, Chen L, Lambertson D, Anand M, Kinzy TG, Madura K. Proteasome-mediated degradation of cotranslationally damaged proteins involves translation elongation factor 1A. Mol Cell Biol. 2005;25(1):403-13.
[43] Gonen H, Smith CE, Siegel NR, Kahana C, Merrick WC, Chakraburtty K, Schwartz AL, Ciechanover A. Protein synthesis elongation factor EF-1 alpha is essential for ubiquitin-dependent degradation of certain N alpha-acetylated proteins and may be substituted for by the bacterial elongation factor EF-Tu. Proc Natl Acad Sci U S A. 1994;91(16):7648-52.
[44] Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z. Intrinsically disordered protein. J Mol Graph Model. 2001;19(1):26-59. Review.
[45] Fink AL. Natively unfolded proteins. Curr Opin Struct Biol. 2005;15(1):35-41.
[46] Ward JJ, Sodhi JS, McGuffin LJ, Buxton BF, Jones DT. Prediction and functional analysis of native disorder in proteins from the three kingdoms of life. J Mol Biol. 2004;337(3):635-45.
[47] Kang J, Kim T, Ko YG, Rho SB, Park SG, Kim MJ, Kwon HJ, Kim S. Heat shock protein 90 mediates protein-protein interactions between human aminoacyl-tRNA synthetases. J Biol Chem. 2000;275(41):31682-8.
[48] Quevillon S, Robinson JC, Berthonneau E, Siatecka M, Mirande M. Macromolecular assemblage of aminoacyl-tRNA synthetases: identification of protein-protein interactions and characterization of a core protein. J Mol Biol. 1999;285(1):183-95.