Biopolym. Cell. 2003; 19(4):317-327.
Огляди
Трансгенні рослини: за і проти
- Інститут біоорганічної хімії та нафтохімії НАН України
вул. Мурманська, 1, Київ, Україна, 02094
Abstract
В огляді розглядаються питання, пов'язані з широким впровадженням трансгенних рослин в сільськогосподарське виробництво, а саме: перенесення генів; можливий вплив на довкілля селективних і маркерних генів, що вводяться в рослину
разом з бажаним геном; способи отримання безмаркерних рослин; проблеми, які при цьому виникають, та можливі шляхи їхнього вирішення
Повний текст: (PDF, російською)
References
[1]
Levenko BA. Plant biotechnology: present state and perspectives. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1999; 31(3):163-72.
[2]
Gleba YuYu. Plant Biotechnology. Proc. rep. VII Intern. Conf. "Biology of plant cells in vitro, biotechnology and the preservation of the gene pool" (25-28 November 1997). M., 1997: 6-7.
[3]
Levenko BA. Gene transfer and problems of transgenic plants. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1998; 30(2):83-111.
[4]
Galkin AP, Bulko OK, Leoshina LG, Medvedeva TV. Clean-up of contaminated lands from heavy metals using transgenic plants. Proc. 5th Int. Symp. «ln Situ and on-site bioremediation». New-Orlean, 1997. Vol. 3: 325-329.
[5]
Mason HS, Arntzen CJ. Transgenic plants as vaccine production systems. Trends Biotechnol. 1995;13(9):388-92.
[6]
Ellstrand NC. Pollen as a vehicle for the escape of engineered genes? Trends Ecol Evol. 1988;3(4):S30-2.
[8]
Kerlan MC, Chevre AM, Eber F, Botterman J, Degree W. Risk assessment of gene transfer from transgenic rapeseed to wild species in optimal conditions. Rapeseed in a Changing World. Ed A. McGregor. Sasketon, 1991. Vol. 4: 1028-33.
[9]
Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J. Ecology of transgenic oilseed rape in natural habitats. Nature. 1993;363(6430):620–3.
[10]
Hernould M, Suharsono S, Litvak S, Araya A, Mouras A. Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci U S A. 1993;90(6):2370-4.
[11]
Maliga P. Towards plastid transformation in flowering plants. Trends Biotechnol. 1993;11(3):101–7.
[12]
McBride KE, Schaaf DJ, Daley M, Stalker DM. Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994;91(15):7301-5.
[13]
Sawahel WA. Transgenic plants: performance, release and containment. World J Microbiol Biotechnol. 1994;10(2):139-44.
[14]
Redenbaugh K, Hiatt W, Martineau B, Emlay D. Determination of the safety of genetically engineered crops. Genetically modified foods: safety issues. Eds Kh. Engel, G. Takeoka., R. Teranishi. Washington: D. C , 1995: 72-87.
[15]
Tong-Jen Fu. Safety considerations for food ingredients produced by plant cell and tissue culture. CHEMTECH. 1998; 28(1): 40-6.
[16]
Yoder JI, Goldsbrough AP. Transformation Systems for Generating Marker–Free Transgenic Plants. Bio/Technology. 1994;12(3):263–7.
[18]
Flavell RB, Dart E, Fuchs RL, Fraley RT. Selectable marker genes: safe for plants? Biotechnology (N Y). 1992;10(2):141-4.
[19]
Calgene Imc. Request for advisory opinion-Kanamycin resistant gene-safety and use in the production of genetically engineered plants. FDA Docket Number 90A-0416. 1990.
[20]
Calgene Imc. Request for advisory opinion-FLAVARSAVRRM tomato: status as food. FDA Docket Number 91A-0330. 1991.
[22]
Goldsbrough AP, Lastrella CN, Yoder JI. Transposition Mediated Re–positioning and Subsequent Elimination of Marker Genes from Transgenic Tomato. Nature Biotechnology. 1993;11(11):1286–92.
[23]
Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 1996;10(1):165-74.
[24]
Daley M, Knauf VC, Summerfelt KR, Turner JC. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 1998;17(6-7):489–96.
[25]
Daniell H, Muthukumar B, Lee SB. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet. 2001;39(2):109-16.
[26]
Zhang CL, Chen DF, McCormac AC, Scott NW, Elliott MC, Slater A. Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). Mol Biotechnol. 2001;17(2):109-17.
[27]
Iamtham S, Day A. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol. 2000;18(11):1172-6.
[28]
Dale EC, Ow DW. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A. 1991;88(23):10558-62.
[29]
Corneille S, Lutz K, Svab Z, Maliga P. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 2001;27(2):171-8.
[30]
Hajdukiewicz PT, Gilbertson L, Staub JM. Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 2001;27(2):161-70.
[31]
Buchanan-Wollaston V, Snape A, Cannon F. A plant selectable marker gene based on the detoxification of the herbicide dalapon. Plant Cell Rep. 1992;11(12):627-31.
[32]
Tourneur C, Jouanin L, Vaucheret H. Over-expression of acetolactate synthase confers resistance to valine in transgenic tobacco. Plant Sci. 1993;88(2):159–68.
[33]
Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Bio/Technology. 1993;11(6):715–8.
[34]
Rathinasabapathi B, McCue KF, Gage DA, Hanson AD. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta. 1994;193(2):155-62.
[35]
Yoder JI, Palys J, Alpert K, Lassner M. Ac transposition in transgenic tomato plants. Mol Gen Genet. 1988;213(2-3):291–6.
[36]
Masterson RV, Furtek DB, Grevelding C, Schell J. A maize Ds transposable element containing a dihydrofolate reductase gene transposes in Nicotiana tabacum and Arabidopsis thaliana. Mol Gen Genet. 1989;219(3):461–6.
[37]
De Block M, Debrouwer D. Two T-DNA's co-transformed intoBrassica napus by a doubleAgrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet. 1991;82(3):257-63.
[38]
De Framond AJ, Back EW, Chilton WS, Kayes L, Chilton M-D. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet. 1986;202(1):125–31.
[39]
McKnight TD, Lillis MT, Simpson RB. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol. 1987;8(6):439-45.
[40]
FDA. Secondary direct food additives permitted in food for human consumption; food additives permitted in feed and drinking water of animals; aminoglycoside 3'-phosphotransferase II; final rule. Fed. Reg. 1994. 59: 26700-26711.
[41]
Matzke MA, Primig M, Trnovsky J, Matzke AJ. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 1989;8(3):643-9.
[42]
Fujiwara T, Lessard PA, Beachy RN. Inactivation of the nopaline synthase gene by double transformation: reactivation by segregation of the induced DNA. Plant Cell Rep. 1993;12(3):133-8.
[43]
Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci U S A. 1997;94(6):2117-21.
[44]
Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A. 1984;81(19):5994-8.
[45]
Barry GF, Rogers SG, Fraley RT, Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci U S A. 1984;81(15):4776-80.
[46]
Brzobohat? B, Moore I, Palme K. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol. 1994;26(5):1483-97.
[47]
Sugita K, Matsunaga E, Ebinuma H. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep. 1999;18(11):941–7.
[48]
Araki H, Jearnpipatkul A, Tatsumi H, Sakurai T, Ushio K, Muta T, Oshima Y. Molecular and functional organization of yeast plasmid pSR1. J Mol Biol. 1985;182(2):191-203.
[49]
Russell SH, Hoopes JL, Odell JT. Directed excision of a transgene from the plant genome. Mol Gen Genet. 1992;234(1):49-59.
[50]
Qin M, Bayley C, Stockton T, Ow DW. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A. 1994;91(5):1706-10.
[51]
Onouchi H, Nishihama R, Kudo M, Machida Y, Machida C. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet. 1995;247(6):653-60.
[52]
Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bacteriol. 1990;172(2):610-8.
[53]
Sugita K, Kasahara T, Matsunaga E, Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J. 2000;22(5):461-9.
[54]
Zuo J, Niu QW, M?ller SG, Chua NH. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol. 2001;19(2):157-61.
[55]
Zuo J, Chua NH. Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol. 2000;11(2):146-51.
[56]
Pat. USA no. WO 9301294. Plant-derived enzyme and DNA sequences, and uses thereof. I. G. Bridges, S. W. J. Bright, A. J. Greenland, D. C. Holt, I. Jepson, W. Schuch. Publ. 1993.
[57]
Hobbs SL, Warkentin TD, DeLong CM. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol. 1993;21(1):17-26.
[58]
Matzke M, Matzke AJ, Scheid OM. Inactivation of repeated genes-DNA-DNA interaction. Homologous recombination and gene silencing in plants. Ed. J. Paszkowski. Dordrecht: Kluwer Acad. Publ., 1994: 271-307.
[59]
Gatz C. Chemical control of gene expression. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:89-108.
[60]
Martinez A, Sparks C, Hart CA, Thompson J, Jepson I. Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J. 1999;19(1):97-106.
[61]
Salter MG, Paine JA, Riddell KV, Jepson I, Greenland andrew J, Caddick MX, et al. Characterisation of the ethanol-inducible alc gene expression system for transgenic plants. Plant J. 1998;16(1):127–32.