Biopolym. Cell. 2003; 19(4):317-327.
Reviews
Transgenic plants: pro and contra
- Institute of Bioorganic Chemistry and Petrochemistry, NAS of Ukraine
1, Murmans'ka Str., Kyiv, Ukraine, 02094
Abstract
The review is focused on the problems of extensive application of transgenic plants in the agricultural industry, namely, transfer of genes to plants: possible influence of selective and marker genes, introduced into plants together with a gem' of interest, on the environment. The promising approaches to solve these problems are discussed.
Full text: (PDF, in Russian)
References
[1]
Levenko BA. Plant biotechnology: present state and perspectives. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1999; 31(3):163-72.
[2]
Gleba YuYu. Plant Biotechnology. Proc. rep. VII Intern. Conf. "Biology of plant cells in vitro, biotechnology and the preservation of the gene pool" (25-28 November 1997). M., 1997: 6-7.
[3]
Levenko BA. Gene transfer and problems of transgenic plants. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1998; 30(2):83-111.
[4]
Galkin AP, Bulko OK, Leoshina LG, Medvedeva TV. Clean-up of contaminated lands from heavy metals using transgenic plants. Proc. 5th Int. Symp. «ln Situ and on-site bioremediation». New-Orlean, 1997. Vol. 3: 325-329.
[5]
Mason HS, Arntzen CJ. Transgenic plants as vaccine production systems. Trends Biotechnol. 1995;13(9):388-92.
[6]
Ellstrand NC. Pollen as a vehicle for the escape of engineered genes? Trends Ecol Evol. 1988;3(4):S30-2.
[8]
Kerlan MC, Chevre AM, Eber F, Botterman J, Degree W. Risk assessment of gene transfer from transgenic rapeseed to wild species in optimal conditions. Rapeseed in a Changing World. Ed A. McGregor. Sasketon, 1991. Vol. 4: 1028-33.
[9]
Crawley MJ, Hails RS, Rees M, Kohn D, Buxton J. Ecology of transgenic oilseed rape in natural habitats. Nature. 1993;363(6430):620–3.
[10]
Hernould M, Suharsono S, Litvak S, Araya A, Mouras A. Male-sterility induction in transgenic tobacco plants with an unedited atp9 mitochondrial gene from wheat. Proc Natl Acad Sci U S A. 1993;90(6):2370-4.
[11]
Maliga P. Towards plastid transformation in flowering plants. Trends Biotechnol. 1993;11(3):101–7.
[12]
McBride KE, Schaaf DJ, Daley M, Stalker DM. Controlled expression of plastid transgenes in plants based on a nuclear DNA-encoded and plastid-targeted T7 RNA polymerase. Proc Natl Acad Sci U S A. 1994;91(15):7301-5.
[13]
Sawahel WA. Transgenic plants: performance, release and containment. World J Microbiol Biotechnol. 1994;10(2):139-44.
[14]
Redenbaugh K, Hiatt W, Martineau B, Emlay D. Determination of the safety of genetically engineered crops. Genetically modified foods: safety issues. Eds Kh. Engel, G. Takeoka., R. Teranishi. Washington: D. C , 1995: 72-87.
[15]
Tong-Jen Fu. Safety considerations for food ingredients produced by plant cell and tissue culture. CHEMTECH. 1998; 28(1): 40-6.
[16]
Yoder JI, Goldsbrough AP. Transformation Systems for Generating Marker–Free Transgenic Plants. Bio/Technology. 1994;12(3):263–7.
[18]
Flavell RB, Dart E, Fuchs RL, Fraley RT. Selectable marker genes: safe for plants? Biotechnology (N Y). 1992;10(2):141-4.
[19]
Calgene Imc. Request for advisory opinion-Kanamycin resistant gene-safety and use in the production of genetically engineered plants. FDA Docket Number 90A-0416. 1990.
[20]
Calgene Imc. Request for advisory opinion-FLAVARSAVRRM tomato: status as food. FDA Docket Number 91A-0330. 1991.
[22]
Goldsbrough AP, Lastrella CN, Yoder JI. Transposition Mediated Re–positioning and Subsequent Elimination of Marker Genes from Transgenic Tomato. Nature Biotechnology. 1993;11(11):1286–92.
[23]
Komari T, Hiei Y, Saito Y, Murai N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers. Plant J. 1996;10(1):165-74.
[24]
Daley M, Knauf VC, Summerfelt KR, Turner JC. Co-transformation with one Agrobacterium tumefaciens strain containing two binary plasmids as a method for producing marker-free transgenic plants. Plant Cell Rep. 1998;17(6-7):489–96.
[25]
Daniell H, Muthukumar B, Lee SB. Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet. 2001;39(2):109-16.
[26]
Zhang CL, Chen DF, McCormac AC, Scott NW, Elliott MC, Slater A. Use of the GFP reporter as a vital marker for Agrobacterium-mediated transformation of sugar beet (Beta vulgaris L.). Mol Biotechnol. 2001;17(2):109-17.
[27]
Iamtham S, Day A. Removal of antibiotic resistance genes from transgenic tobacco plastids. Nat Biotechnol. 2000;18(11):1172-6.
[28]
Dale EC, Ow DW. Gene transfer with subsequent removal of the selection gene from the host genome. Proc Natl Acad Sci U S A. 1991;88(23):10558-62.
[29]
Corneille S, Lutz K, Svab Z, Maliga P. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system. Plant J. 2001;27(2):171-8.
[30]
Hajdukiewicz PT, Gilbertson L, Staub JM. Multiple pathways for Cre/lox-mediated recombination in plastids. Plant J. 2001;27(2):161-70.
[31]
Buchanan-Wollaston V, Snape A, Cannon F. A plant selectable marker gene based on the detoxification of the herbicide dalapon. Plant Cell Rep. 1992;11(12):627-31.
[32]
Tourneur C, Jouanin L, Vaucheret H. Over-expression of acetolactate synthase confers resistance to valine in transgenic tobacco. Plant Sci. 1993;88(2):159–68.
[33]
Perl A, Galili S, Shaul O, Ben-Tzvi I, Galili G. Bacterial dihydrodipicolinate synthase and desensitized aspartate kinase: two novel selectable markers for plant transformation. Bio/Technology. 1993;11(6):715–8.
[34]
Rathinasabapathi B, McCue KF, Gage DA, Hanson AD. Metabolic engineering of glycine betaine synthesis: plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance. Planta. 1994;193(2):155-62.
[35]
Yoder JI, Palys J, Alpert K, Lassner M. Ac transposition in transgenic tomato plants. Mol Gen Genet. 1988;213(2-3):291–6.
[36]
Masterson RV, Furtek DB, Grevelding C, Schell J. A maize Ds transposable element containing a dihydrofolate reductase gene transposes in Nicotiana tabacum and Arabidopsis thaliana. Mol Gen Genet. 1989;219(3):461–6.
[37]
De Block M, Debrouwer D. Two T-DNA's co-transformed intoBrassica napus by a doubleAgrobacterium tumefaciens infection are mainly integrated at the same locus. Theor Appl Genet. 1991;82(3):257-63.
[38]
De Framond AJ, Back EW, Chilton WS, Kayes L, Chilton M-D. Two unlinked T-DNAs can transform the same tobacco plant cell and segregate in the F1 generation. Mol Gen Genet. 1986;202(1):125–31.
[39]
McKnight TD, Lillis MT, Simpson RB. Segregation of genes transferred to one plant cell from two separate Agrobacterium strains. Plant Mol Biol. 1987;8(6):439-45.
[40]
FDA. Secondary direct food additives permitted in food for human consumption; food additives permitted in feed and drinking water of animals; aminoglycoside 3'-phosphotransferase II; final rule. Fed. Reg. 1994. 59: 26700-26711.
[41]
Matzke MA, Primig M, Trnovsky J, Matzke AJ. Reversible methylation and inactivation of marker genes in sequentially transformed tobacco plants. EMBO J. 1989;8(3):643-9.
[42]
Fujiwara T, Lessard PA, Beachy RN. Inactivation of the nopaline synthase gene by double transformation: reactivation by segregation of the induced DNA. Plant Cell Rep. 1993;12(3):133-8.
[43]
Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene. Proc Natl Acad Sci U S A. 1997;94(6):2117-21.
[44]
Akiyoshi DE, Klee H, Amasino RM, Nester EW, Gordon MP. T-DNA of Agrobacterium tumefaciens encodes an enzyme of cytokinin biosynthesis. Proc Natl Acad Sci U S A. 1984;81(19):5994-8.
[45]
Barry GF, Rogers SG, Fraley RT, Brand L. Identification of a cloned cytokinin biosynthetic gene. Proc Natl Acad Sci U S A. 1984;81(15):4776-80.
[46]
Brzobohat? B, Moore I, Palme K. Cytokinin metabolism: implications for regulation of plant growth and development. Plant Mol Biol. 1994;26(5):1483-97.
[47]
Sugita K, Matsunaga E, Ebinuma H. Effective selection system for generating marker-free transgenic plants independent of sexual crossing. Plant Cell Rep. 1999;18(11):941–7.
[48]
Araki H, Jearnpipatkul A, Tatsumi H, Sakurai T, Ushio K, Muta T, Oshima Y. Molecular and functional organization of yeast plasmid pSR1. J Mol Biol. 1985;182(2):191-203.
[49]
Russell SH, Hoopes JL, Odell JT. Directed excision of a transgene from the plant genome. Mol Gen Genet. 1992;234(1):49-59.
[50]
Qin M, Bayley C, Stockton T, Ow DW. Cre recombinase-mediated site-specific recombination between plant chromosomes. Proc Natl Acad Sci U S A. 1994;91(5):1706-10.
[51]
Onouchi H, Nishihama R, Kudo M, Machida Y, Machida C. Visualization of site-specific recombination catalyzed by a recombinase from Zygosaccharomyces rouxii in Arabidopsis thaliana. Mol Gen Genet. 1995;247(6):653-60.
[52]
Matsuzaki H, Nakajima R, Nishiyama J, Araki H, Oshima Y. Chromosome engineering in Saccharomyces cerevisiae by using a site-specific recombination system of a yeast plasmid. J Bacteriol. 1990;172(2):610-8.
[53]
Sugita K, Kasahara T, Matsunaga E, Ebinuma H. A transformation vector for the production of marker-free transgenic plants containing a single copy transgene at high frequency. Plant J. 2000;22(5):461-9.
[54]
Zuo J, Niu QW, M?ller SG, Chua NH. Chemical-regulated, site-specific DNA excision in transgenic plants. Nat Biotechnol. 2001;19(2):157-61.
[55]
Zuo J, Chua NH. Chemical-inducible systems for regulated expression of plant genes. Curr Opin Biotechnol. 2000;11(2):146-51.
[56]
Pat. USA no. WO 9301294. Plant-derived enzyme and DNA sequences, and uses thereof. I. G. Bridges, S. W. J. Bright, A. J. Greenland, D. C. Holt, I. Jepson, W. Schuch. Publ. 1993.
[57]
Hobbs SL, Warkentin TD, DeLong CM. Transgene copy number can be positively or negatively associated with transgene expression. Plant Mol Biol. 1993;21(1):17-26.
[58]
Matzke M, Matzke AJ, Scheid OM. Inactivation of repeated genes-DNA-DNA interaction. Homologous recombination and gene silencing in plants. Ed. J. Paszkowski. Dordrecht: Kluwer Acad. Publ., 1994: 271-307.
[59]
Gatz C. Chemical control of gene expression. Annu Rev Plant Physiol Plant Mol Biol. 1997;48:89-108.
[60]
Martinez A, Sparks C, Hart CA, Thompson J, Jepson I. Ecdysone agonist inducible transcription in transgenic tobacco plants. Plant J. 1999;19(1):97-106.
[61]
Salter MG, Paine JA, Riddell KV, Jepson I, Greenland andrew J, Caddick MX, et al. Characterisation of the ethanol-inducible alc gene expression system for transgenic plants. Plant J. 1998;16(1):127–32.