Biopolym. Cell. 2000; 16(3):195-204.
Структура та функції біополімерів
1Н-ЯМР аналіз гетероасоціації кофеїну з фенантридинієвим барвником йодистим пропідієм у водному розчині
1, 2Веселков Д. О., 1Сігаєв В. О., 1Висоцький С. О., 1Димант Л. Н., 2Девіс Д. Б., 1Веселков О. Н.
  1. Севастопольський національний технічний университет
    вул. Університетська, 33, Севастополь, Україна, 99053
  2. Беркбек колледж Лондонского университета
    Малет-стрит, Лондон WC1E 7НХ, Великобритания

Abstract

Розглянуто молекулярний механизм дії кофеїну (CAF) як комплексоутворювача – інтерцептора ароматичних лігандів, інтеркалюючих у ДНК, на прикладі типового інтеркалятора фенантридинієвого барвника йодистого пропідію (РІ). Вивчено процеси гетероасоціації молекул CAF і РІ методом одно- та двовимірної 1Н-ЯМР спектроскопії (500 МГц). Виміряно кон­центраційні (при температурі 298 К) та температурні залежності протонних хімічних зсувів молекул у водному розчині. Визначено рівноважну константу реакції гетероа­соціації CAF і РІ при Т-298 К (К-28±5 л/ моль), а також значення граничних хімічних зсувів протонів ароматичних лігандів у складі асоціатів. На основі розрахованих значень індукованих протонних хімічніх зсувів молекул і квантовомеханічних кривих екранування для CAF і РІ визначено найвірогіднішу структуру 1:1 гетерокомплексу CAF–PI в роз­чині. Розраховано термодинамічні параметри утворення ге­терокомплексу CAF–PI. Структурний і термодинамічний аналіз свідчить про суттєву роль дисперсійних сил і гідрофобних взаємодій при утворенні гетерокомплексу у водносольовому розчині. Здійснено розрахунок відносного вмісту різного типу асоціатів у змішаному розчині, який містить CAF і РІ. Виявлено особливості рівноваги гетероасоціатів CAF–PI в розчині в залежності від концентрації і темпера­тури. Гетероасоціація молекул CAF і РІ призводить до меншої ефективної концентрації інтеркалятора в розчині і відповідно до зниження біологічної активності барвника.

References

[1] Gale EE, Cundliffe E, Reynolds PE, Richmond MN, Waring MJ. The Molecular Basis of Antibiotic Action. London: John Wiley, 1981. 500 p.
[2] Neidle S, Pearl LH, Skelly JV. DNA structure and perturbation by drug binding. Biochem J. 1987;243(1):1-13.
[3] Reinhardt CG, Krugh TR. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences. Biochemistry. 1978;17(23):4845-54.
[4] Feigon J, Leupin W, Denny WA, Kearns DR. Binding of ethidium derivatives to natural DNA: a 300 MHz 1H NMR study. Nucleic Acids Res. 1982;10(2):749-62.
[5] Davies DB, Djimant LN, Veselkov AN. 1 H NMR Structural Analysis of the Interactions of Proflavine with Self-Complementary Deoxytetranucleosides of Different Base Sequence . Nucleosides and Nucleotides. 1994;13(1-3):637–55.
[6] Davies DB, Veselkov AN. Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy. Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5?-d(GpCpGpC) and 5?-d(CpGpCpG) in aqueous solution. Faraday Trans. 1996;92(19):3545-57.
[7] Davies DB, Karawajew L, Veselkov AN. 1H-NMR structural analysis of ethidium bromide complexation with self-complementary deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA) in aqueous solution. Biopolymers. 1996;38(6):745-57.
[8] Mashkovskiy MD. Drugs. M.: Meditsina, 1985. 2: 107.
[9] Selby CP, Sancar A. Molecular mechanisms of DNA repair inhibition by caffeine. Proc Natl Acad Sci U S A. 1990;87(9):3522-5.
[10] Fritzsche H, Petri I, Sch?tz H, Weller K, Sedmera P, Lang H. On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine--5'-adenosine monophosphate and caffeine-poly(riboadenylate) interactions. Biophys Chem. 1980;11(1):109-19.
[11] Kimura H, Aoyama T. Decrease in sensitivity to ethidium bromide by caffeine, dimethylsulfoxide or 3-aminobenzamide due to reduced permeability. J Pharmacobiodyn. 1989;12(10):589-95.
[12] Iliakis G, Nusse M, Ganapathi R, Egner J, Yen A. Differential reduction by caffeine of adriamycin induced cell killing and cell cycle delays in Chinese hamster V79 cells. Int J Radiat Oncol Biol Phys. 1986;12(11):1987-95.
[13] Traganos F, Kapuscinski J, Darzynkiewicz Z. Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD198. Cancer Res. 1991;51(14):3682-9.
[14] Larsen RW, Jasuja R, Hetzler RK, Muraoka PT, Andrada VG, Jameson DM. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys J. 1996;70(1):443-52.
[15] Kapuscinski J, Kimmel M. Thermodynamical model of mixed aggregation of intercalators with caffeine in aqueous solution. Biophys Chem. 1993;46(2):153-63.
[16] Baxter NJ, Williamson MP, Lilley TH, Haslam E. Stacking interactions between caffeine and methyl gallate. Faraday Trans. 1996;92(2):231-4.
[17] Aradi F, F?ldesi A. Hetero-association of caffeine and theophylline with purine and pyrimidine in aqueous solutions studied by1H NMR chemical shift measurements. Magn Reson Chem. 1989;27(3):249–52.
[18] Chen J-S, Shiao J-C. Graphic method for the determination of the complex NMR shift and equilibrium constant for a hetero-association accompanying a self-association. Faraday Trans. 1994;90(3):429-33.
[19] Weller K, Sch?tz H, Petri I. Thermodynamical model of indefinite mixed association of two components and NMR data analysis for caffeine-AMP interaction. Biophys Chem. 1984;19(4):289-98.
[20] Davies B, Dennis A. Veselkov, Alex D. Structure and thermodynamics of the hetero-association of aromatic molecules in aqueous solution determined by NMR spectroscopy. Molecular Physics. 1999;97(3):439–51.
[21] Veselkov DA, Davies DB, Djimant LN, Veselkov AN. Molecular basis of the protective action of caffeine on the complexation of intercalating ligands with DNA. Biopolym Cell. 2000; 16(6):468-81.
[22] Hopkins HP Jr, Fumero J, Wilson WD. Temperature dependence of enthalpy changes for ethidium and propidium binding to DNA: effect of alkylamine chains. Biopolymers. 1990;29(2):449-59.
[23] Marky LA, Macgregor RB Jr. Hydration of dA.dT polymers: role of water in the thermodynamics of ethidium and propidium intercalation. Biochemistry. 1990;29(20):4805-11.
[24] Lilley TH, Linsdell H, Maestre A. Association of caffeine in water and in aqueous solutions of sucrose. Faraday Trans. 1992;88(19):2865-70.
[25] Patel DJ, Canuel LL. Netropsin-poly(dA-dT) complex in solution: structure and dynamics of antibiotic-free base pair regions and those centered on bound netropsin. Proc Natl Acad Sci U S A. 1977;74(12):5207-11.
[26] Davies DB, Djimant LN, Veselkov AN. 1H NMR investigation of self-association of aromatic drug molecules in aqueous solution. Structural and thermodynamical analysis. Faraday Trans. 1996;92(3):383-90.
[27] Veselkov AN, Djimant LN, Karawajew L, Kulikov EL. Investigation of the aggregation of acridine dyes in aqueous solution by proton NMR. Stud Biophys. 1985;106(3):171-80.
[28] Kan LS, Borer PN, Cheng DM, Ts'o PO. 1H- and 13C-NMR studies on caffeine and its interaction with nucleic acids. Biopolymers. 1980;19(9):1641-54.
[29] Giessner-Prettre C, Pullman B. Quantum mechanical calculations of NMR chemical shifts in nucleic acids. Q Rev Biophys. 1987;20(3-4):113-72.
[30] Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096-102.