Biopolym. Cell. 2000; 16(3):195-204.
Structure and Function of Biopolymers
1H-NMR analysis of hetero-association of caffeine with phenanthridinium dye propidium iodide in aqueous solution
- Sevastopol National Technical University
33, Universytetska Str., Sevastopol, Ukraine, 99053 - Birkbeck, University of London
Malet Str., Bloomsbury, London WC1E 7HX, UK
Abstract
Molecular basis of the caffeine (CAP) action as a complex forming agent – interceptor of aromatic drugs intercalating into DNA, using as an example a typical intercalator, a phenanthridinium dye propidium iodide (PI), has been examined. Hetero-association of CAF and PI has been studied by one- and two-dimensional 1H-NMR spectroscopy (500 MHz). Concentration and temperature dependences of the proton chemical shifts of the molecules in aqueous solution have been measured. The equilibrium reaction constant of the hetero-association of CAP with PI at T-298 K(K - 28 ± 5 M–1 ), the limiting chemical shifts of the protons of caffeine in the complexes have been determined. The most favourable structure of 1:1 CAF-P1 hetero-complex in aqueous solution has been constructed using the calculated values of the induced proton chemical shifts of the molecules and the Quantum-mechanical isoshielding curves for CAP and PI. Thermodynamical parameters of the hetero-complex formation between CAP and PI have been also determined. Structural and thermodynamical analysis has shown that dispersive forces and hydrophobic interactions play the major role in the hetero-association of CAP and PI in aqueous-salt solution. The relative content of different complexes in the mixed solution containing CAP and PI has been calculated and distinctive features of the dynamic equilibrium of the CAP-PI hetero-associates have been revealed as a function of concentration and temperature. It is concluded that hetero-association of CAP and PI molecules leads to lower effective concentration of the dye in solution and respectively to lower biological activity of PI.
Full text: (PDF, in Russian)
References
[1]
Gale EE, Cundliffe E, Reynolds PE, Richmond MN, Waring MJ. The Molecular Basis of Antibiotic Action. London: John Wiley, 1981. 500 p.
[2]
Neidle S, Pearl LH, Skelly JV. DNA structure and perturbation by drug binding. Biochem J. 1987;243(1):1-13.
[3]
Reinhardt CG, Krugh TR. A comparative study of ethidium bromide complexes with dinucleotides and DNA: direct evidence for intercalation and nucleic acid sequence preferences. Biochemistry. 1978;17(23):4845-54.
[4]
Feigon J, Leupin W, Denny WA, Kearns DR. Binding of ethidium derivatives to natural DNA: a 300 MHz 1H NMR study. Nucleic Acids Res. 1982;10(2):749-62.
[5]
Davies DB, Djimant LN, Veselkov AN. 1 H NMR Structural Analysis of the Interactions of Proflavine with Self-Complementary Deoxytetranucleosides of Different Base Sequence . Nucleosides and Nucleotides. 1994;13(1-3):637–55.
[6]
Davies DB, Veselkov AN. Structural and thermodynamical analysis of molecular complexation by 1H NMR spectroscopy. Intercalation of ethidium bromide with the isomeric deoxytetranucleoside triphosphates 5?-d(GpCpGpC) and 5?-d(CpGpCpG) in aqueous solution. Faraday Trans. 1996;92(19):3545-57.
[7]
Davies DB, Karawajew L, Veselkov AN. 1H-NMR structural analysis of ethidium bromide complexation with self-complementary deoxytetranucleotides 5'-d(ApCpGpT), 5'-d(ApGpCpT), and 5'-d(TpGpCpA) in aqueous solution. Biopolymers. 1996;38(6):745-57.
[8]
Mashkovskiy MD. Drugs. M.: Meditsina, 1985. 2: 107.
[9]
Selby CP, Sancar A. Molecular mechanisms of DNA repair inhibition by caffeine. Proc Natl Acad Sci U S A. 1990;87(9):3522-5.
[10]
Fritzsche H, Petri I, Sch?tz H, Weller K, Sedmera P, Lang H. On the interaction of caffeine with nucleic acids. III. 1H NMR studies of caffeine--5'-adenosine monophosphate and caffeine-poly(riboadenylate) interactions. Biophys Chem. 1980;11(1):109-19.
[11]
Kimura H, Aoyama T. Decrease in sensitivity to ethidium bromide by caffeine, dimethylsulfoxide or 3-aminobenzamide due to reduced permeability. J Pharmacobiodyn. 1989;12(10):589-95.
[12]
Iliakis G, Nusse M, Ganapathi R, Egner J, Yen A. Differential reduction by caffeine of adriamycin induced cell killing and cell cycle delays in Chinese hamster V79 cells. Int J Radiat Oncol Biol Phys. 1986;12(11):1987-95.
[13]
Traganos F, Kapuscinski J, Darzynkiewicz Z. Caffeine modulates the effects of DNA-intercalating drugs in vitro: a flow cytometric and spectrophotometric analysis of caffeine interaction with novantrone, doxorubicin, ellipticine, and the doxorubicin analogue AD198. Cancer Res. 1991;51(14):3682-9.
[14]
Larsen RW, Jasuja R, Hetzler RK, Muraoka PT, Andrada VG, Jameson DM. Spectroscopic and molecular modeling studies of caffeine complexes with DNA intercalators. Biophys J. 1996;70(1):443-52.
[15]
Kapuscinski J, Kimmel M. Thermodynamical model of mixed aggregation of intercalators with caffeine in aqueous solution. Biophys Chem. 1993;46(2):153-63.
[16]
Baxter NJ, Williamson MP, Lilley TH, Haslam E. Stacking interactions between caffeine and methyl gallate. Faraday Trans. 1996;92(2):231-4.
[17]
Aradi F, F?ldesi A. Hetero-association of caffeine and theophylline with purine and pyrimidine in aqueous solutions studied by1H NMR chemical shift measurements. Magn Reson Chem. 1989;27(3):249–52.
[18]
Chen J-S, Shiao J-C. Graphic method for the determination of the complex NMR shift and equilibrium constant for a hetero-association accompanying a self-association. Faraday Trans. 1994;90(3):429-33.
[19]
Weller K, Sch?tz H, Petri I. Thermodynamical model of indefinite mixed association of two components and NMR data analysis for caffeine-AMP interaction. Biophys Chem. 1984;19(4):289-98.
[20]
Davies B, Dennis A. Veselkov, Alex D. Structure and thermodynamics of the hetero-association of aromatic molecules in aqueous solution determined by NMR spectroscopy. Molecular Physics. 1999;97(3):439–51.
[21]
Veselkov DA, Davies DB, Djimant LN, Veselkov AN. Molecular basis of the protective action of caffeine on the complexation of intercalating ligands with DNA. Biopolym Cell. 2000; 16(6):468-81.
[22]
Hopkins HP Jr, Fumero J, Wilson WD. Temperature dependence of enthalpy changes for ethidium and propidium binding to DNA: effect of alkylamine chains. Biopolymers. 1990;29(2):449-59.
[23]
Marky LA, Macgregor RB Jr. Hydration of dA.dT polymers: role of water in the thermodynamics of ethidium and propidium intercalation. Biochemistry. 1990;29(20):4805-11.
[24]
Lilley TH, Linsdell H, Maestre A. Association of caffeine in water and in aqueous solutions of sucrose. Faraday Trans. 1992;88(19):2865-70.
[25]
Patel DJ, Canuel LL. Netropsin-poly(dA-dT) complex in solution: structure and dynamics of antibiotic-free base pair regions and those centered on bound netropsin. Proc Natl Acad Sci U S A. 1977;74(12):5207-11.
[26]
Davies DB, Djimant LN, Veselkov AN. 1H NMR investigation of self-association of aromatic drug molecules in aqueous solution. Structural and thermodynamical analysis. Faraday Trans. 1996;92(3):383-90.
[27]
Veselkov AN, Djimant LN, Karawajew L, Kulikov EL. Investigation of the aggregation of acridine dyes in aqueous solution by proton NMR. Stud Biophys. 1985;106(3):171-80.
[28]
Kan LS, Borer PN, Cheng DM, Ts'o PO. 1H- and 13C-NMR studies on caffeine and its interaction with nucleic acids. Biopolymers. 1980;19(9):1641-54.
[29]
Giessner-Prettre C, Pullman B. Quantum mechanical calculations of NMR chemical shifts in nucleic acids. Q Rev Biophys. 1987;20(3-4):113-72.
[30]
Ross PD, Subramanian S. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry. 1981;20(11):3096-102.