Biopolym. Cell. 2000; 16(2):115-123.
Структура та функції біополімерів
Вивчення елементів просторової структури
тPHKSer
Thermus thermophilus у розчині
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
Методами хімічної модифікації вивчено реакційну здатність залишків фосфорної кислоти т а
азотистих основ, що входять до складу тРНКSer Т. thermophilus. Отримані результати свідчать
про надзвичайну близкість просторової структури тРНКSer
у розчині до такої в кристалі комплексу тРНКSer Т. thermophilus з серил-тРНК синтетазою.
Повний текст: (PDF, українською)
References
[1]
Biou V, Yaremchuk A, Tukalo M, Cusack S. The 2.9 A crystal structure of T. thermophilus seryl-tRNA synthetase complexed with tRNA(Ser). Science. 1994;263(5152):1404-10.
[2]
Gieg? R, Florentz C, Garcia A, Grosjean H, Perret V, Puglisi J, Th?obald-Dietrich A, Ebel JP. Exploring the aminoacylation function of transfer RNA by macromolecular engineering approaches. Involvement of conformational features in the charging process of yeast tRNA(Asp). Biochimie. 1990;72(6-7):453-61. Review.
[3]
Holbrook SR, Sussman JL, Warrant RW, Kim SH. Crystal structure of yeast phenylalanine transfer RNA. II. Structural features and functional implications. J Mol Biol. 1978;123(4):631-60.
[4]
Westhof E, Dumas P, Moras D. Crystallographic refinement of yeast aspartic acid transfer RNA. J Mol Biol. 1985;184(1):119-45.
[5]
Ruff M, Krishnaswamy S, Boeglin M, Poterszman A, Mitschler A, Podjarny A, Rees B, Thierry JC, Moras D. Class II aminoacyl transfer RNA synthetases: crystal structure of yeast aspartyl-tRNA synthetase complexed with tRNA(Asp). Science. 1991;252(5013):1682-9.
[6]
Rould MA, Perona JJ, S?ll D, Steitz TA. Structure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution. Science. 1989;246(4934):1135-42.
[7]
Nissen P, Thirup S, Kjeldgaard M, Nyborg J. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure. 1999;7(2):143-56.
[8]
Brennan T, Sundaralingam M. Structlre of transfer RNA molecules containing the long variable loop. Nucleic Acids Res. 1976;3(11):3235-50.
[9]
Dock-Bregeon AC, Westhof E, Gieg? R, Moras D. Solution structure of a tRNA with a large variable region: yeast tRNASer. J Mol Biol. 1989;206(4):707-22.
[10]
Asahara H, Himeno H, Tamura K, Nameki N, Hasegawa T, Shimizu M. Escherichia coli seryl-tRNA synthetase recognizes tRNA(Ser) by its characteristic tertiary structure. J Mol Biol. 1994;236(3):738-48.
[11]
Petrushenko ZM, Tukalo MA, Gudzera OI, Rozhko OT, Matsuka GKh. Determination of interacting segments of tRNA(Leu) from cow mammary glands with homologous aminoacyl-tRNA-synthetase by a chemical modification method. Bioorg Khim. 1990;16(12):1647-52.
[12]
Dietrich A, Romby P, Mar?chal-Drouard L, Guillemaut P, Gieg? R. Solution conformation of several free tRNALeu species from bean, yeast and Escherichia coli and interaction of these tRNAs with bean cytoplasmic Leucyl-tRNA synthetase. A phosphate alkylation study with ethylnitrosourea. Nucleic Acids Res. 1990;18(9):2589-97.
[13]
McClain WH. Rules that govern tRNA identity in protein synthesis. J Mol Biol. 1993;234(2):257-80.
[15]
Tamura K, Asahara H, Himeno H, Hasegawa T, Shimizu M. Identity elements of Escherichia coli tRNA(Ala). J Mol Recognit. 1991;4(4):129-32.
[16]
Asahara H, Himeno H, Tamura K, Hasegawa T, Watanabe K, Shimizu M. Recognition nucleotides of Escherichia coli tRNA(Leu) and its elements facilitating discrimination from tRNASer and tRNA(Tyr). J Mol Biol. 1993;231(2):219-29.
[17]
Asahara H, Nameki N, Hasegawa T. In vitro selection of RNAs aminoacylated by Escherichia coli leucyl-tRNA synthetase. J Mol Biol. 1998;283(3):605-18.
[18]
Petrushenko ZM, Tukalo MA, Matsuka GKh. A study of the conformation of tRNA(IAGLeu) from the cow mammary gland using chemical modification methods. Bioorg Khim. 1988;14(1):31-6.
[19]
Watanabe Y, Tsurui H, Ueda T, Furushima R, Takamiya S, Kita K, Nishikawa K, Watanabe K. Primary and higher order structures of nematode (Ascaris suum) mitochondrial tRNAs lacking either the T or D stem. J Biol Chem. 1994;269(36):22902-6.
[20]
Watanabe Y, Kawai G, Yokogawa T, Hayashi N, Kumazawa Y, Ueda T, Nishikawa K, Hirao I, Miura K, Watanabe K. Higher-order structure of bovine mitochondrial tRNA(SerUGA): chemical modification and computer modeling. Nucleic Acids Res. 1994;22(24):5378-84.
[21]
Cusack S, Yaremchuk A, Tukalo M. The crystal structure of the ternary complex of T.thermophilus seryl-tRNA synthetase with tRNA(Ser) and a seryl-adenylate analogue reveals a conformational switch in the active site. EMBO J. 1996;15(11):2834-42.
[22]
Romby P, Gieg? R, Houssier C, Grosjean H. Anticodon-anticodon interactions in solution. Studies of the self-association of yeast or Escherichia coli tRNAAsp and of their interactions with Escherichia coli tRNAVal. J Mol Biol. 1985;184(1):107-118.
[23]
Nureki O, Niimi T, Muto Y, Kanno H, Kohno T, Muramat-su T, Kawai G, Miyazawa T, Giege R, Florentz C, Yokoyama S. Conformational change of tRNA upon interaction of the identity-determinant set with aminoacyl-tRNA synthetase. The translational apparatus. New York; London: Plenum press, 1993: 59-78.
[24]
Petrushenko ZM, Kovalenko OP, Malchenko NN, Krikliviy IA, Yaremchuk AD, Tukalo MA. The primary structure of tRNASer from Thermus thermophilus. Biopolym Cell. 1997; 13(3):202-8.
[25]
Silberklang M, Gillum AM, RajBhandary UL. The use of nuclease P1 in sequence analysis of end group labeled RNA. Nucleic Acids Res. 1977;4(12):4091-108.
[26]
Vlassov VV, Gieg? R, Ebel JP. Tertiary structure of tRNAs in solution monitored by phosphodiester modification with ethylnitrosourea. Eur J Biochem. 1981;119(1):51-9.
[27]
Vlassov VV, Giege R, Ebel JP. The tertiary structure of yeast tRNAPhe in solution studied by phosphodiester bond modification with ethylnitrosourea. FEBS Lett. 1980;120(1):12-6.
[28]
Romby P, Moras D, Dumas P, Ebel JP, Gieg? R. Comparison of the tertiary structure of yeast tRNA(Asp) and tRNA(Phe) in solution. Chemical modification study of the bases. J Mol Biol. 1987;195(1):193-204.
[29]
Peattie DA. Direct chemical method for sequencing RNA. Proc Natl Acad Sci U S A. 1979;76(4):1760-4.
[30]
Metzger AU, Heckl M, Willbold D, Breitschopf K, RajBhandary UL, R?sch P, Gross HJ. Structural studies on tRNA acceptor stem microhelices: exchange of the discriminator base A73 for G in human tRNALeu switches the acceptor specificity from leucine to serine possibly by decreasing the stability of the terminal G1-C72 base pair. Nucleic Acids Res. 1997;25(22):4551-6.
[31]
Quigley GJ, Rich A. Structural domains of transfer RNA molecules. Science. 1976;194(4267):796-806.
[32]
Romby P, Carbon P, Westhof E, Ehresmann C, Ebel JP, Ehresmann B, Gieg? R. Importance of conserved residues for the conformation of the T-loop in tRNAs. J Biomol Struct Dyn. 1987;5(3):669-87.
[33]
Ehresmann C, Baudin F, Mougel M, Romby P, Ebel JP, Ehresmann B. Probing the structure of RNAs in solution. Nucleic Acids Res. 1987;15(22):9109-28.