Biopolym. Cell. 1999; 15(6):529-537.
Геном та його регуляція
Аналіз послідовності гена інсудіноподібного фиктора росту I
кети: транспозони
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
У геномах більшості хребетних присутні десятки тисяч копій TcІ-подібних транспозонів, переважна частина яких знаходиться у ділянці геному, що не експресусться. В результаті аналізу повної нуклеотидної послідовності гена інсуліноподібного фактора росту І (ІGF-І) кети у другому та третьому інтронах було знайдено два Тс 1 -подібних транспозони (Тоk і та Тоk2), гомологічні елементу SATI i Tss2) сьомги. Наявність транспозона в третьому інтроні обох неалельних копій гена IGF-I кети, подібна будова цієї частини гена інших лососевих і його відсутність у генах окуня, судака, щуки тілляпії свідчать про те, що інтеграція рухомих елементів, відбулася до початку тетраплоїдизації загального предка лосевих, але після його виокремлення із загальної лінії костистих риб. інтеграція Тоk2 значно збільшила розмір третього інтрона гена ІGF-І лососевих та, ймовірно, впливає на альтернативний сплайсинг четвертого екзона. Розташуваня , транспозонів у гені IGT-1 і наявністі у геномі кети певної кількості, гомологічних елементів, обрамовуючих послідовності, що експресуються. дозволяють припустити можливість переносу екзонів ибо генів хребетних у складі «касети двох транспозонів подібно до того, як це відбувається у
прокаріот та безхребетних. Такий прочес може призводити до формування нових генів.
Повний текст: (PDF, російською)
References
[1]
Berg D., Howe M. Mobile DNA, Washington: Amer. Soc. Microbiol 1989 p. 200.
[2]
Brezinsky L, Humphreys TD, Hunt JA. Evolution of the transposable element Uhu in five species of Hawaiian Drosophila. Genetica. 1992;86(1-3):21-35.
[3]
Robertson HM. The mariner transposable element is widespread in insects. Nature. 1993;362(6417):241-5.
[4]
Mizuuchi K. Transpositional recombination: mechanistic insights from studies of mu and other elements. Annu Rev Biochem. 1992;61:1011-51.
[5]
van Luenen HG, Colloms SD, Plasterk RH. The mechanism of transposition of Tc3 in C. elegans. Cell. 1994;79(2):293-301.
[6]
Heierhorst J, Lederis K, Richter D. Presence of a member of the Tc1-like transposon family from nematodes and Drosophila within the vasotocin gene of a primitive vertebrate, the Pacific hagfish Eptatretus stouti. Proc Natl Acad Sci U S A. 1992;89(15):6798-802.
[7]
Goodier JL, Davidson WS. Tc1 transposon-like sequences are widely distributed in salmonids. J Mol Biol. 1994;241(1):26-34.
[8]
Radice AD, Bugaj B, Fitch DH, Emmons SW. Widespread occurrence of the Tc1 transposon family: Tc1-like transposons from teleost fish. Mol Gen Genet. 1994;244(6):606-12.
[9]
Izsvak Z, Ivics Z, Hackett PB. Characterization of a Tc1-like transposable element in zebrafish (Danio rerio). Mol Gen Genet. 1995;247(3):312-22.
[10]
Ivics Z, Izsvak Z, Minter A, Hackett PB. Identification of functional domains and evolution of Tc1-like transposable elements. Proc Natl Acad Sci U S A. 1996;93(10):5008-13.
[11]
Lam WL, Lee TS, Gilbert W. Active transposition in zebrafish. Proc Natl Acad Sci U S A. 1996;93(20):10870-5.
[12]
Koga A, Suzuki M, Inagaki H, Bessho Y, Hori H. Transposable element in fish. Nature. 1996;383(6595):30.
[13]
Lam WL, Seo P, Robison K, Virk S, Gilbert W. Discovery of amphibian Tc1-like transposon families. J Mol Biol. 1996;257(2):359-66.
[14]
Oosumi T., Belknap W., Garlick B. Mariner transposons in humans. 1995 Nature, 387, p. 873.
[15]
Ivics Z, Hackett PB, Plasterk RH, Izsv?k Z. Molecular reconstruction of Sleeping Beauty, a Tc1-like transposon from fish, and its transposition in human cells. Cell. 1997;91(4):501-10.
[16]
Maniatis T., Fritchs E.F., Sambrook J. (1982) Molecular Cloning: A Laboratory Manual. New York: Cold Spring Harbor Lab
[17]
Ohno, S., Wolf, U., Atkin, N.B. Evolution from fish to mammals by gene duplication. (1968) Hereditas, 59 (1), pp. 169-187.
[18]
Allendorf, F., Thorgaard, G. (1984) Tetraploidy and the Evolution of Salmonid Fishes. the Evolutionary Genetics of Fishes, Ed. B. J. Turner., New York: Plenum press pp. 1-53.
[19]
Kavsan VM, Grebenjuk VA, Koval AP, Skorokhod AS, Roberts CT Jr, Leroith D. Isolation of a second nonallelic insulin-like growth factor I gene from the salmon genome. DNA Cell Biol. 1994;13(5):555-9.
[20]
Kavsan VM, Koval AP, Grebenjuk VA, Chan SJ, Steiner DF, Roberts CT Jr, LeRoith D. Structure of the chum salmon insulin-like growth factor I gene. DNA Cell Biol. 1993;12(8):729-37.
[21]
Wallis AE, Devlin RH. Duplicate insulin-like growth factor-I genes in salmon display alternative splicing pathways. Mol Endocrinol. 1993;7(3):409-22.
[22]
Chen JY, Tsai HL, Chang CY, Wang JI, Shen SC, Wu JL. Isolation and characterization of tilapia (Oreochromis mossambicus) insulin-like growth factors gene and proximal promoter region. DNA Cell Biol. 1998;17(4):359-76.
[23]
Tanaka M, Taniguchi T, Yamamoto I, Sakaguchi K, Yoshizato H, Ohkubo T, Nakashima K. Gene and cDNA structures of flounder insulin-like growth factor-I (IGF-I): multiple mRNA species encode a single short mature IGF-I. DNA Cell Biol. 1998;17(10):859-68.
[24]
Shamblott MJ, Chen TT. Age-related and tissue-specific levels of five forms of insulin-like growth factor mRNA in a teleost. Mol Mar Biol Biotechnol. 1993;2(6):351-61.
[25]
Duguay SJ, Park LK, Samadpour M, Dickhoff WW. Nucleotide sequence and tissue distribution of three insulin-like growth factor I prohormones in salmon. Mol Endocrinol. 1992;6(8):1202-10.
[26]
Chen M.H.-C., Lin G.-H., Gong H.-Y., Lee C.-Y., Chang C.-Y., Chen T.T., Wu J.-L. Cloning and characterization of insulin-like growth factor I cDNA from black seabream (Acanthopagrus schlegeli). Zoological Studies, 1998; 37(3):213-221.
[27]
Duguay SJ, Lai-Zhang J, Steiner DF, Funkenstein B, Chan SJ. Developmental and tissue-regulated expression of IGF-I and IGF-II mRNAs in Sparus aurata. J Mol Endocrinol. 1996;16(2):123-32.
[28]
Reinecke M, Schmid A, Ermatinger R, Loffing-Cueni D. Insulin-like growth factor I in the teleost Oreochromis mossambicus, the tilapia: gene sequence, tissue expression, and cellular localization. Endocrinology. 1997;138(9):3613-9.
[29]
Loffing-Cueni D, Schmid AC, Graf H, Reinecke M. IGF-I in the bony fish Cottus scorpius: cDNA, expression and differential localization in brain and islets. Mol Cell Endocrinol. 1998;141(1-2):187-94.
[30]
Liang YH, Cheng CH, Chan KM. Insulin-like growth factor IEa2 is the predominantly expressed form of IGF in common carp (Cyprinus carpio). Mol Mar Biol Biotechnol. 1996;5(2):145-52.
[31]
Robertson HM, Lampe DJ. Distribution of transposable elements in arthropods. Annu Rev Entomol. 1995;40:333-57.
[32]
Moerinan D.G., Waterston R.H. Mobile Elements In Caenorhabditis Elegans and Other Nematodes, Mobile DNA. Washington: Amer. Soc. Microbiol 1989; pp. 537-556.
[33]
Muller-Schmid A1, Rinder H, Lottspeich F, Gertzen EM, Hoffmann W. Ependymins from the cerebrospinal fluid of salmonid fish: gene structure and molecular characterization. Gene. 1992;118(2):189-96.
[35]
Lewin B. Genes. (2nd Edition). New York, John Wiley & Sons, 1985; 734 p.
[36]
Chen J, Greenblatt IM, Dellaporta SL. Molecular analysis of Ac transposition and DNA replication. Genetics. 1992;130(3):665-76.
[37]
Engels WR, Johnson-Schlitz DM, Eggleston WB, Sved J. High-frequency P element loss in Drosophila is homolog dependent. Cell. 1990;62(3):515-25.