Biopolym. Cell. 1998; 14(2):163-172.
Методи
Синтез та використання дисульфідного Н-фосфонатного реагента для 3 ' - та/або 5'-мічення олігонуклеотидів через меркаптоалкільний лінкер
1Дубей І. Я., 1Федоряк Д. М.
  1. Інститут біоорганічної хімії та нафтохімії НАН України
    вул. Мурманська, 1, Київ, Україна, 02094

Abstract

Описано синтез нового дисульфідного Н-фосфонатного реагента для твердофазного введення в олігонуклеотиди меркаптопропільних груп по одному чи двох кінцях. З використанням цього реагента було синтезовано З'- та 5'-дисульфідні похідні олігонуклеотидів. Дисульфідні зв'язки розщеплено дитіотреїтолом і тіольні групи, що утворилися, модифіковано йодацетамідофлюоресцеїном. З високим виходом одержано оліго-Т15, які несуть один чи два залишки флюоресиеіну на У- і 5 -кінцях.

References

[1] Uhlmann E, Peyman A. Antisense oligonucleotides: a new therapeutic principle. Chem Rev. 1990;90(4):543–84.
[2] Goodchild J. Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconjug Chem. 1990;1(3):165-87.
[3] Englisch U, Gauss DH. Chemically modified oligonucleotides as probes and inhibitors. Angew Chem Int Ed Engl. 1991;30(6):613–29.
[4] Thuong NT, H?l?ne C. Sequence-specific recognition and modification of double-helical DNA by oligonucleotides. Angew Chem Int Ed Engl. 1993;32(5):666–90.
[5] Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem. 1995;64:763-97.
[6] Beaucage SL, Iyer RP. The Functionalization of Oligonucleotides Via Phosphoramidite Derivatives. Tetrahedron. 1993;49(10):1925–63.
[7] Korshun VA, Berlin YuA. Introduction of nonradioactive reporter groups into synthetic oligonucleotides and their detection. Bioorg Khim. 1994, 20 (6):565-616
[8] Oligonucleotides and Analogues: a Practical Approach. Ed. by F. Eckstein. Oxford: IRL press, 1991. 313 p.
[9] Protocols for Oligonucleotide Conjugates. Ed. S. Agrawal. New York: Humana Press, 1994. Vol. 26. 377 p.
[10] Haughland R. P. Handbook of Fluorescent Probes and Research Chemicals. Molecular Probes Inc. Eugene, 1996. 679 p.
[11] Zuckermann R, Corey D, Schultz P. Efficient methods for attachment of thiol specific probes to the 3'-ends of synthetic oligodeoxyribonucleotides. Nucleic Acids Res. 1987;15(13):5305-21.
[12] Bischoff R, Coull JM, Regnier FE. Introduction of 5'-terminal functional groups into synthetic oligonucleotides for selective immobilization. Anal Biochem. 1987;164(2):336-44.
[13] Chu BCF, Orgel LE. Postsynthesis functionalization of oligonucleotides. Protocols for Oligonucleotide Conjugates. Ed. S. Agrawal. New York: Humana Press, 1994. Vol. 26: 145-65.
[14] Pei D, Corey DR, Schultz PG. Site-specific cleavage of duplex DNA by a semisynthetic nuclease via triple-helix formation. Proc Natl Acad Sci U S A. 1990;87(24):9858-62.
[15] Eritja R, Pons A, Escarcellar M, Giralt E, Albericio F. Synthesis of defined peptide-oligonucleotide hybrids containing a nuclear transport signal sequence. Tetrahedron. 1991;47(24):4113–20.
[16] Ghosh SS, Kao PM, McCue AW, Chappelle HL. Use of maleimide-thiol coupling chemistry for efficient syntheses of oligonucleotide-enzyme conjugate hybridization probes. Bioconjug Chem. 1990;1(1):71-6.
[17] Ede NJ, Tregear GW, Haralambidis J. Routine preparation of thiol oligonucleotides: application to the synthesis of oligonucleotide-peptide hybrids. Bioconjug Chem. 1994;5(4):373-8.
[18] Arar K, Aubertin AM, Roche AC, Monsigny M, Mayer R. Synthesis and antiviral activity of peptide-oligonucleotide conjugates prepared by using N alpha-(bromoacetyl)peptides. Bioconjug Chem. 1995;6(5):573-7.
[19] Gupta KC, Sharma P, Sathyanarayana S, Kumar P. A universal solid support for the synthesis of 3?-thiol group containing oligonucleotides. Tetrahedron Lett. 1990;31(17):2471–4.
[20] Oberhauser B, Wagner E. Effective incorporation of 2'-O-methyl-oligoribonucleotides into liposomes and enhanced cell association through modification with thiocholesterol. Nucleic Acids Res. 1992;20(3):533-8.
[21] Kumar P, Bose NK, Gupta KC. A versatile solid phase method for the synthesis of oligonucleotide-3?-phosphates. Tetrahedron Lett. 1991;32(7):967–70.
[22] Bonfils E, Thuong NT. Solid phase synthesis of 5',3'-bifunctional oligodeoxyribonucleotides bearing a masked thiol group at the 3'-end. Tetrahedron Lett. 1991; 32(26): 3053-3056.
[23] Azhayeva E, Azhayev A, Guzaev A, Hovinen J, L?nnberg H. Looped oligonucleotides form stable hybrid complexes with a single-stranded DNA. Nucleic Acids Res. 1995;23(7):1170-6.
[24] Gao H, Yang M, Patel R, Cook AF. Circulation of oligonucleotides by disulfide bridge formation. Nucleic Acids Res. 1995;23(11):2025-9.
[25] Kelley SO, Barton JK, Jackson NM, Hill MG. Electrochemistry of methylene blue bound to a DNA-modified electrode. Bioconjug Chem. 1997;8(1):31-7.
[26] K?ster H, Schramm G. Zum Mechanismus der Nucleosidsynthese mit Polyphosphors?ure-phenylester. Chem Ber . Wiley-Blackwell; 1969;102(11):3868–76.
[27] Fieser L, Fieser M. Reagents for Organic Synthesis. New York: J. Wiley, 1967; 357 p.
[28] Froehler BC, Ng PG, Matteucci MD. Synthesis of DNA via deoxynucleoside H-phosphonate intermediates. Nucleic Acids Res. 1986;14(13):5399-407.
[29] Andrus A, Efcavitch JW, McBride LJ, Giusti B. Novel activating and capping reagents for improved hydrogen-phosphonate DNA synthesis. Tetrahedron Lett. 1988;29(8):861–4.
[30] Handbook of Biochemistry and Molecular Biology. Ed. by G. Fasman. Boca Raton: CRC, 1975. Vol. 1: 175.
[31] Harding JS, Owen LN. Dithiols. Part XIV. The alkaline hydrolysis of acetylated non-vicinal hydroxy-thiols. J Chem Soc. 1954;1536-45.
[32] Danehy JP, Hunter WE. Alkaline decomposition of organic disulfides. II. Alternative pathways as determined by structure. J Org Chem. 1967;32(7):2047–53.
[33] Sproat BS, Beijer B, Rider P, Neuner P. The synthesis of protected 5'-mercapto-2',5'-dideoxyribonucleoside-3'-O-phosphoramidites; uses of 5'-mercapto-oligodeoxyribonucleotides. Nucleic Acids Res. 1987;15(12):4837-48.
[34] Meyer KL, Hanna MM. Synthesis and characterization of a new 5-thiol-protected deoxyuridine phosphoramidite for site-specific modification of DNA. Bioconjug Chem. 1996;7(4):401-12.
[35] Fidanza JA, McLaughlin LW. Use of a thiol tether for the site-specific attachment of reporter groups to DNA. J Org Chem. 1992;57(8):2340–6.
[36] Connolly BA, Rider P. Chemical synthesis of oligonucleotides containing a free sulphydryl group and subsequent attachment of thiol specific probes. Nucleic Acids Res. 1985;13(12):4485-502.
[37] Sinha ND, Cook RM. The preparation and application of functionalised synthetic oligonucleotides: III. Use of H-phosphonate derivatives of protected amino-hexanol and mercapto-propanol or -hexanol. Nucleic Acids Res. 1988;16(6):2659-69.
[38] Sinha ND, Striepeke S. Oligonucleotides with reporter groups attached to the 5'-terminus. Oligonucleotides and Analogues: a Practical Approach. Ed. by F. Eckstein. Oxford: IRL press, 1991: 185-210.
[39] Horn T, Urdea MS. A chemical 5?-phosphorylation of oligodeoxyribonucleotides that can be monitored by trityl cation release. Tetrahedron Lett. 1986;27(39):4705–8.
[40] Dubey IY, Lyapina TV, Fedoryak DM. Study of the H-phosphonate synthesis of oligonucleotides and their derivatives. Advanced school on genes transfer and regulation of their expression in eukaryotes. Toulouse: Univ. P. Sabatier press, 1993.
[41] Theisen P, McCollum C, Andrus A. Fluorescent dye phosphoramidite labelling of oligonucleotides. Nucleic Acids Symp Ser. 1992;(27):99-100.
[42] New direct-labelling CE-phosphoramidites for use in automated DNA synthesis. CLONTECHniques. July 1992: 28.
[43] Stewart AJ, Pichon C, Midoux P et al. Fluorescent labelling of unmodified phosphorothioate oligodeoxynucleotides: synthesis and characterization. New J. Chem. 1997; 21(1):87-98.