Biopolym. Cell. 1997; 13(6):509-512.
Дискусії
Нейротоксичність збуджуючих амінокислот і захворювання центральної нервової системи
1Магура І. С., 1Рожманова О. М.
  1. Інститут фізіології ім. О. О. Богомольця НАН України
    Вул. Академіка Богомольця, 4, Київ, Україна, 01024

Abstract

Надмірна активація рецепторів збуджуючих амінокислощ. веде до підвищення внутрішньоклітинної концентрації Са2+ , що викликає активацію протеїнкіназ, фосфоліпаз, протеаз, NO синтази, порушення функції мітохондрій, накопичення вільних радикалів і експресії генів. Транзиторний інтенсивний струм Са2+ у клітину може неконтрольовано активувати ці по­ тенціально летальні процеси. Загибель нейронів, що супровод­жує надмірну дію збуджуючих амінокислот, є критичним фактором, загальним для різноманітних неврологічних захво­рювань від інсульту, черепно-мозкових травм, епілепсії до таких хронічних нейродегенеративних захворювань, як хворо­ба Хантінгтона, аміотрофічний латеральний склероз, хвороба Альцгеймера Токсична дія збуджуючих амінокислот зростає при порушеннях енергетики нейронів. Нона також залежить від ефективності функціонування, механізмів зворотного транспорту нейромедіаторів і стану рецепторів збуджуючих амінокислот.

References

[1] Collingridge GL, Singer W. Excitatory amino acid receptors and synaptic plasticity. Trends Pharmacol Sci. 1990;11(7):290-6.
[2] Collingridge GL, Bliss TV. Memories of NMDA receptors and LTP. Trends Neurosci. 1995;18(2):54-6.
[3] Choi DW. Glutamate neurotoxicity and diseases of the nervous system. Neuron. 1988;1(8):623-34.
[4] Beal MF. Mechanisms of excitotoxicity in neurologic diseases. FASEB J. 1992;6(15):3338-44.
[5] Olney JW. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus. An electron microscopic study. J Neuropathol Exp Neurol. 1971;30(1):75-90.
[6] Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262(5134):689-95.
[7] Rosenberg PA, Amin S, Leitner M. Glutamate uptake disguises neurotoxic potency of glutamate agonists in cerebral cortex in dissociated cell culture. J Neurosci. 1992;12(1):56-61.
[8] Beal MF, Hyman BT, Koroshetz W. Do defects in mitochondrial energy metabolism underlie the pathology of neurodegenerative diseases? Trends Neurosci. 1993;16(4):125-31.
[9] Lipton SA, Rosenberg PA. Excitatory amino acids as a final common pathway for neurologic disorders. N Engl J Med. 1994;330(9):613-22.
[10] Nakanishi S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron. 1994;13(5):1031-7.
[11] Pin JP, Duvoisin R. The metabotropic glutamate receptors: structure and functions. Neuropharmacology. 1995;34(1):1-26.
[12] Bruno V, Sureda FX, Storto M, Casabona G, Caruso A, Knopfel T, Kuhn R, Nicoletti F. The neuroprotective activity of group-II metabotropic glutamate receptors requires new protein synthesis and involves a glial-neuronal signaling. J Neurosci. 1997;17(6):1891-7.
[13] Rothman SM, Olney JW. Excitotoxicity and the NMDA receptor--still lethal after eight years. Trends Neurosci. 1995;18(2):57-8.
[14] Johnson JW, Ascher P. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature. 1987 Feb 5-11;325(6104):529-31.
[15] Kleckner NW, Dingledine R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science. 1988;241(4867):835-7.
[16] Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature. 1984 May 17-23;309(5965):261-3.
[17] Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature. 1984 Feb 2-8;307(5950):462-5.
[18] Westbrook GL, Mayer ML. Micromolar concentrations of Zn2+ antagonize NMDA and GABA responses of hippocampal neurons. Nature. 1987 Aug 13-19;328(6131):640-3.
[19] Williams K, Romano C, Dichter MA, Molinoff PB. Modulation of the NMDA receptor by polyamines. Life Sci. 1991;48(6):469-98.
[20] McBain CJ, Mayer ML. N-methyl-D-aspartic acid receptor structure and function. Physiol Rev. 1994;74(3):723-60.
[21] Paoletti P, Ascher P. Mechanosensitivity of NMDA receptors in cultured mouse central neurons. Neuron. 1994;13(3):645-55.
[22] Guidetti P, Eastman CL, Schwarcz R. Metabolism of [5-3H]kynurenine in the rat brain in vivo: evidence for the existence of a functional kynurenine pathway. J Neurochem. 1995;65(6):2621-32.
[23] Naritsin DB, Saito K, Markey SP, Chen CY, Heyes MP. Metabolism of L-tryptophan to kynurenate and quinolinate in the central nervous system: effects of 6-chlorotryptophan and 4-chloro-3-hydroxyanthranilate. J Neurochem. 1995;65(5):2217-26.
[24] Stone TW. Neuropharmacology of quinolinic and kynurenic acids. Pharmacol Rev. 1993;45(3):309-79.
[25] Jhamandas KH, Boegman RJ, Beninger RJ. The 1993 Upjohn Award Lecture. Quinolinic acid induced brain neurotransmitter deficits: modulation by endogenous excitotoxin antagonists. Can J Physiol Pharmacol. 1994;72(12):1473-82.
[26] Kessler M, Terramani T, Lynch G, Baudry M. A glycine site associated with N-methyl-D-aspartic acid receptors: characterization and identification of a new class of antagonists. J Neurochem. 1989;52(4):1319-28.
[27] Porter RH, Greenamyre JT. Regional variations in the pharmacology of NMDA receptor channel blockers: implications for therapeutic potential. J Neurochem. 1995;64(2):614-23.
[28] Mayer ML, Westbrook GL. The physiology of excitatory amino acids in the vertebrate central nervous system. Prog Neurobiol. 1987;28(3):197-276.
[29] Hollmann M, Hartley M, Heinemann S. Ca2+ permeability of KA-AMPA--gated glutamate receptor channels depends on subunit composition. Science. 1991;252(5007):851-3.
[30] Lipton SA. Calcium channel antagonists in the prevention of neurotoxicity. Adv Pharmacol. 1991;22:271-97.
[31] Frandsen A, Schousboe A. Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons. Proc Natl Acad Sci U S A. 1992;89(7):2590-4.
[32] Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF. Involvement of free radicals in excitotoxicity in vivo. J Neurochem. 1995;64(5):2239-47.
[33] Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P. Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron. 1995;15(4):961-73.
[34] Choi DW. Calcium: still center-stage in hypoxic-ischemic neuronal death. Trends Neurosci. 1995;18(2):58-60.
[35] Meldolesi J, Volpe P, Pozzan T. The intracellular distribution of calcium. Trends Neurosci. 1988;11(10):449-52.
[36] Kennedy MB. Regulation of neuronal function by calcium. Trends Neurosci. 1989;12(11):417-20.
[37] Hardingham GE, Chawla S, Johnson CM, Bading H. Distinct functions of nuclear and cytoplasmic calcium in the control of gene expression. Nature. 1997;385(6613):260-5.
[38] Schreiber SS, Baudry M. Selective neuronal vulnerability in the hippocampus--a role for gene expression? Trends Neurosci. 1995;18(10):446-51.
[39] Ghosh A, Greenberg ME. Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science. 1995;268(5208):239-47.
[40] Churn SB, Limbrick D, Sombati S, DeLorenzo RJ. Excitotoxic activation of the NMDA receptor results in inhibition of calcium/calmodulin kinase II activity in cultured hippocampal neurons. J Neurosci. 1995;15(4):3200-14.
[41] Kolb SJ, Hudmon A, Waxham MN. Ca2+/calmodulin kinase II translocates in a hippocampal slice model of ischemia. J Neurochem. 1995;64(5):2147-56.