Biopolym. Cell. 1994; 10(1):3-30.
Геномна мінливість та накопичення індолінових алкалоїдів у культурі клітин раувольфії зміїної, Rauwolfia serpentina Benth.
1Кунах В. А.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Зроблено аналіз літературних даних та власних досліджень, виконаних у 1979–1993 pp. Головним результатом роботи за цей пеіод є одержання нових клітинних штамш-продуцентгв i розробка умов ix вирощування, що пришвишило накопичення індолінового алкалоїду аймаліну до 6–8%, а в окремих (випадках – до 20%. Це майже у 100 разів вище порівняно з 5–7-річними рослинами, що ростуть у тропіках.

References

[1] Butenko RG. Cell technologies for economically important substances of plant origin. Plant cell culture and biotechnology. Moscow, 1986:3-20.
[2] Fowler MW. Industrial applications of plant cell culture. Plant cell culture, technology. Ed. MM Yeoman. Oxford etc., 1986; Vol. 23:202-27.
[3] Tanaka H. Large-scale cultivation of plant cells at high density: a review. Process Biochem. 1987. 22(4): 106-113.
[4] Constabel F. Principles underlying the use of plant cell fermentation for secondary metabolite production. Biochem Cell Biol. 1988; 66(6):658-64.
[5] Ellis BE. Natural products from plant tissue culture. Nat Prod Rep. 1988;5(6):581-612.
[6] Furuya T. Production of useful compounds by plant cell cultures--de novo synthesis and biotransformation. Yakugaku Zasshi. 1988;108(8):675-96.
[7] Heinstein P, Emery A. Processes with plant cell cultures. Biotechnol. Wein- heim, 1988. Vol. 6 b: 213-248.
[8] DiCosmo F, Facchini P J, Kraml MM. Cultured plant cells - the chemical factory within. Chem Brit. 1989; 25(10):1001-4.
[9] Kreis W, Reinhard E. The production of secondary metabolites by plant cells cultivated in bioreactors1. Planta Med. 1989;55(5):409-16.
[10] Parr AJ. The production of secondary metabolites by plant cell cultures. J Biotechnol. 1989;10(1):1–26.
[11] Pedersen H, Cho GH, Kim D. et al. Mass transfer in plant cell systems. 8th Int. Biotechnol. Symp. (Paris, 1988): Proc. Paris. 1989; Vol. 1: 480-8.
[12] Rittershaus E, Brummer B, Stiller W. Weiss A. Grofitechnische Fermentation von pflanzlichen Zellkulturen. Downstream Processing zur Produktgewinnung aus pflanzlichen Zellkulturen im grofitechnischen Mafistab. BioEng. 1989; (3):51-4.
[13] Tabala M. Secretion of secondary products by plant cell cultures. 8th Int. Biotechnol. Symp. (Paris, 1988) . Paris, 1989; Vol. 1: 167-78.
[14] Secondary metabolites used as food flavourinas. Genet Eng Biotechnol Monit. 1990;(28):11.
[15] Schmauder H-P, Doebel P. Plant cell cultivation as a biotechnological method. Acta Biotechnol. 1990;10(6):501–16.
[16] Zenk MH. Plant cell cultures: A potential in food and bio-technology. Food Biotechnol. 1990;4(1):461–70.
[17] Cell-culture system to produce less-costly natural vanilla. Bioprocess Technol. 1991; 13(1) 7.
[18] Goldstein WE. Plant cell culture for production of natural ingredients. Heme Colloq sci int cafe (San Francisco, 14-19 juill., 1991 ): Paris : ASIC, 1992: 412-21.
[19] Zafar R, Ajri Vidhu, Datta Anirudha. Application of plant tissue and cell culture for production of secondary metabolites. Fitotherapie. 1992; 63(1): 3 3-43.
[20] Kuzovkina IN, Chernyshova TP, Alterman IE. Characterization of a Ruta graveolens callus tissue strain producing rutacridone. Fiziologiia rasteniy. 1979; 26(3): 429-500.
[21] indsey K, Yeoman MM. Immobilised Plant Cell Culture Systems. Proceedings in Life Sciences. 1985;304–15.
[22] Rokem JS, Tal B, Goldberg I. Methods for Increasing Diosgenin Production by Dioscorea Cells in Suspension Cultures. J Nat Prod. 1985;48(2):210–22.
[23] Staba EJ. Milestones in Plant Tissue Culture Systems for the Production of Secondary Products. J Nat Prod. 1985;48(2):203–9.
[24] Collinge M. Ways and means to plant secondary metabolites. Trends Biotechnol.; 1986;4(12):299–301.
[25] Majerus F, Pareilleux A. Alkaloid accumulation in Ca-alginate entrapped cells of Catharanthus roseus: Using a limiting growth medium. Plant Cell Rep. 1986;5(4):302-5.
[26] Funk C, Gügler K, Brodelius P. Increased secondary product formation in plant cell suspension cultures after treatment with a yeast carbohydrate preparation (elicitor). Phytochemistry. 1987;26(2):401–5.
[27] Haldimann D, Brodelius P. Redirecting cellular metabolism by immobilization of cultured plant cells: A model study with Coffea arabica. Phytochemistry. 1987;26(5):1431–4.
[28] Parr AJ. Secondary products from plant cell culture. Biotechnology in Agriculture. New York, Alan R. Liss, 1988; 1-34.
[29] Reichling J, Beiderbeck R. Pflanzenzellkulturen in Forschung und Praxis. Teil III: Sekundarstoffakkumulation in transformierten in vitro kulturen. GIT Fachz Lab. 1988; 324(5): 466-8.
[30] Nagarajan RP, Keshavarz E, Gerson DF. Optimization of anthocyanin yield in a mutated carrot cell line (Daucus carota) and its implications in large scale production. J Ferment Bioeng. 1989;68(2):102–6.
[31] Tanaka Atsuo. Cultured plant cells as the catalysts for bioreactor. Bioprod. and Bioproc. : 2nd Conf. Promote Jap. (U. S. Joint Proj. and Coop. Biotechnol.) (Lake Biwa, Japan, Sept. 27-30, 1986). Berlin etc., 1989: 3-12.
[32] Vollosovich AG. Some peculiarities of alkaloid accumulation in tissue culture of Rauwolfia serpentina. Highlights Mod. Biochem: Proc. 14th Int. Congr. Biochem. (Prague, 10-15 July, 1988). Utrecht; Tokyo, 1989; Vol. 2: 1177-82.
[33] Wink M. Induction of alkaloid formation on plant cell cultures. Highlights Mod. Biochem: Proc. 14th Int. Congr. Biochem. (Prague, 10-15 July, 1988). Utrecht; Tokyo, 1989; Vol. 2: 1183-92.
[34] Hirata K, Horiuchi M, Ando T, Miyamoto K, Miura Y. Vindoline and catharanthine production in multiple shoot cultures of Catharanthus roseus. J Ferment Bioeng. 1990;70(3):193–5.
[35] Karanova SL, Shamina ZB, Rapoport IA. Influence of NMM on Dioscorea deltoid cell population variability. Genetika. 1975; 11(5): 35-40.
[36] Karanova SL, Nosov AM, Paukov VN, Shamina ZB. Productivity of different cell lines of Dioscorea deltoid. Plant cell culture and biotechnology. Moscow, 1986; 83-7.
[37] Vollosovich NE, Vollosovich AG, Kovaleva TA, Shamina ZB, Butenko RG. Tissue culture strains of Rauwolfia serpentina Benth. and their productivity. Rastitel’nyye resursy. 1976; 12(4): 578-83.
[38] Kuzovkina IN. Cultivation of genetically transformed plants roots: possibilities and prospects of use in plant physiology. Fiziologiia rasteniy. 1992; 39(6):1208-14.
[39] Sadykova GD, Akhanov AU, Buryanov YaI. The use of genetic transformation of Agrobacterium for superproducer lines Solanum laciniatum. Biotekhnologiya. 1991; (5): 33-41.
[40] Bulgakov VP, Zhuravlev YuN. Cultures of transformed plant cells as a new source of obtaining the secondary metabolic products. Usp Sovrem Biol. 1992;112(3):342-9.
[41] Hamill JD, Parr AJ, Rhodes MJC, Robins RJ, Walton NJ. New Routes to Plant Secondary Products. Bio/Technology. 1987;5(8):800–4.
[42] Flores HE, Hoy MW, Pickard JJ. Secondary metabolites from root cultures. Trends in Biotechnology. 1987;5(3):64–9.
[43] Mano Yoshihiro. Variation among hairy root clones and its application. Plant Tissue Cult Lett. 1989; 6(1):1-9.
[44] Christen P, Roberts M, David Phillipson J, Evans W. Alkaloids of hairy root cultures of a Datura candida hybrid. Plant Cell Rep. 1990;9(2):101-4.
[45] Mukundan U, Hjortso MA. Thiophene content in normal and transformed root cultures of tagetes erecta : a comparison with thiophene content in roots of intact plants. J Exp Bot. 1990;41(11):1497–501.
[46] Ishimaru K, Hirose M, Takahashi K, Koyama K, Shimomura K. Tannin Production in Hairy Root Cultures of Sanguisorba officinalis L. Plant tissue culture lett. 1991;8(2):114–7.
[47] Homeyer BC, Fry CZ, Roberts MF. Alkaloid variations in hairy root clones of a Datura Candida hybrid. J Pharm Pharmacol. 1991; 43, Suppl: 21P.
[48] Kuzovkina I. N., Kislov LD, Zhivopistseva MN, Rozha Zh, Sendrey K. Akridone alkaloids of Ruta graveolens callus tissue. Khimiya prirodnykh soedineniy. 1984; (6): 758-61.
[49] Vakhtin YuB, Guzhova IV, Nikolaeva LA, Kunakh VA. Heterogeneity of the tissue culture of Rauwolfia serpentina in respect to its ajmalin production. Tsitologiia. 1985; 27(6):717-20.
[50] Kunakh VA, Alkhimova EG. Rauwolfia serpentina: in vitro culture and the production of ajmaline. Medicinal and Aromatic Plants II. Biotechnology in Agriculture and Forestry. 1989; 7:398-416.
[51] Brodelius P. Utilization of plant cell cultures for production of biochemicals. Hereditas. 1985;103:73–81.
[52] Courtois D. Utilisation de la variabilité exprimée spontanément en culture en vue de l'obtention et de la production de métabolites. Acta Bot Gallica. 1985; 132(3-4):105-12.
[53] Fujita Y, Takahashi S, Yamada Y. Selection of cell lines with high productivity of shikonin derivatives by protoplast culture of Lithospermum erythrorhizon cells. Agric Biol Chem. 1985;49(6):1755–9.
[54] Reichling J. Pflanzenzellkulturen in Forschung und Praxis-Teil. II. GIT Fachz Lab. 1985; 29(9): 854-856, 859-860, 965-967.
[55] Bariaud-Fontanel A, Tabata M. Somaclonal variation in the berberine-producing capability of a culture strain of Thalictrum minus. Plant Cell Rep. 1988;7(3):206-9.
[56] Rai PP. Anthraquinone Formation in Callus Cultures of Cassia podocarpa. J Nat Prod. 1988;51(3):492-5.
[57] Delia C, Tamas M, Ghihan D, Manteanu-Delia C. Alkaloid productivity in various Berberis parvifolia cell lines. Contrib. bot. (Univ. Cluj-napoca). 1989; 171-7.
[58] Van Der Heijden R, Verpoorte R, Ten Hoopen HJG. Cell and tissue cultures ofCatharanthus roseus (L.) G. Don: a literature survey. Plant Cell Tiss Organ Cult. 1989;18(3):231–80.
[59] Morris P, Rudge K, Cresswell R, Fowler MW. Regulation of product synthesis in cell cultures of Catharanthus roseus. V. Long-term maintenance of cells on a production medium. Plant Cell Tiss Organ Cult. 1989;17(2-3):79–90.
[60] Dougall DK, Vogelien DL. Anthocyanin yields of clonal wild carrot cell cultures. Plant Cell Tiss Organ Cult. 1990;23(2):79–91.
[61] Vollosovich AG, Butenko RG. Tissue culture of Rauwolfia serpentina as a alkaloids producer. Culture of isolated organs, tissues and cells of plants. Moscow, Nauka, 1970; 235-57.
[62] Mitra GC, Kaul KN. In vitro culture of root and stem callus of Rauwolfia serpentina Benth. for reserpine. Indian J Exp Biol. 1964; 2(1): 49-51.
[63] Ohta S, Yatazawa M. Growth and alkaloid production in callus tissues of Rauwolfia serpentina. Agric Biol Chem. 1979;43(11):2297–303.
[64] Stöckigt J, Pfitzner A, Firl J. Indole alkaloids from cell suspension cultures of Rauwolfia serpentina benth. Plant Cell Rep. 1981;1(1):36-9.
[65] Yamamoto O, Yamada Y. Production of reserpine and its optimization in cultured Rauwolfia serpentina Benth. cells. Plant Cell Rep. 1986;5(1):50-3.
[66] Arens H, Deus-Neumann B, Zenk MH. Radioimmunoassay for the quantitative determination of ajmaline. Planta Med. 1987;53(2):179-83.
[67] Vollosovich AG, Nikolayeva LA, Zharko GR.Tissue culture of some medicinal plants of the Rauwolfia genus. Rastitel'nyye resursy. 1972; 8 (3): 331-8.
[68] Kaukhova IE, Kunakh VA, Legeida VS, Vollosovich AG. Cytological study of high-productive cell line of Rauwolfia serpentina Benth. in submerged culture. Tsitol Genet. 1981; 15(3):33-7.
[69] Kunakh VA, Kaukhova IG, Alpatova LK, Vollosovich AG. Peculiarities of cell behaviour in tissue culture of Rauwolfia serpentina Benth. Tsitol Genet. 1982; 16(5):6-10.
[70] Vollosovich AG, Puchinina TN, Nikolayeva LA. Optimization of the composition of macro salts for Rauwolfia serpentina Benth. tissue culture. Rastitel'nyye resursy. 1979; 15(4): 616-28.
[71] Vollosovich AG, Puchinina TN, Lisunova NA. Optimization of the composition of macro salts for Rauwolfia tissue culture. Rastitel'nyye resursy. 1982; 18(2): 239-43.
[72] Kaukhova IE, Vollosovich AG, Tsigankova VA. The choice of a medium for submerged cultivation of Rauwolfia serpentina Benth. Tissue. Rastitel'nyye resursy. 1981; 17(2): 217-24
[73] Kovaliova TA, Shamina ZB, Butenko RG. Cytological studies of the tissue culture of Rauwolfia serpentina Benth. Genetika. 1968; 4(5):5-13.
[74] Kovaleva TA, Shamina ZB, Butenko RG. Effect of nitrogen mustard on isolated tissue cultures of Rauwolfia serpentina Benth. Genetika. 1972; 8(2):46–54
[75] Kunakh VA, Zosimovich VP. Effect of kinetin on the frequency and types of chromosome aberrations in a tissue culture of Haplopappus gracilis. Genetika. 1977; 13(8):1355-65.
[76] Kunakh VA, Alpatova LK. The role of plant hormones in the variability of the chromosomes number in tissue culture Haplopappus gracilis. Dokl Akad Nauk SSSR. 1979; 245(4): 967-70.
[77] Kunakh VA. Genome variation in plant somatic cells and factors regulating this process. Tsitol Genet. 1980; 14(1):73-81.
[78] Kunakh VA, Potopal'skiy AI, Tkachuk ZYu, Alpatova LK.Normalization of abnormal karyotype in a population of haplopappus cultured cells under the influence modified RNA. Molekulyarnaya biologiya (Kiev). 1982; Is. 32: 52-6.
[79] Kunakh VA, Adonin VI, Alpatova LK, Tkachuk ZYu, Potopalsky AI. Cytogenetic after-effects of native and tiophosphamide modified RNAs on Haplopappus gracilis tissue culture. Tsitologiia. 1985; 27(4):476-87.
[80] Kunakh VA, Zakhlenyuk OV. Diploidization plant tissue cultures with 5-uracilil-tioureidoglucose (tiacile). Dokl Akad Nauk SSSR. 1984; 279(5): 1241-4.
[81] Kunakh VA, Kaukhova IE, Nikolaeva LA, Alpatova LK, Alkhimova EG, Vollosovich AG. Dependence of the Rauwolfia serpentina cell line productivity on the level of cultivated cell ploidy. Dokl Akad Nauk SSSR. 1983; 270(4):979-82.
[82] Zakhlenyuk OV, Lazurkevich ZV, Kunakh VA, Gubar SI, Shalamaj GP, Usenko LS, Shalamaj AS. Growth activity of 5-uracil-tioureido-glucose (thiacil). Fiziologiia i biokhimiia kul'turnykh rasteniy. 1985; 17(4):343-51.
[83] Lazurkevich ZV, Gubar SI, Shalamay AS, Kunakh VA, Zakhlenyukh OV, Alekseeva IV, Chernetsky VP. Growth activity of 6-azauracil substituted. Fiziologiia i biokhimiia kul'turnykh rasteniy. 1985; 17(1):48-54.
[84] Janaki A. Tetraploidy in Rauwolfia serpentina. Current Sci. 1962; 31:520-1.
[85] Koul MLH. Natural polyploidy in Rauwolfia serpentina. J Sci Res Banaras Hindu Univ. 1963-1964; 14(2): 100-2.
[86] Banerjee N, Sharma AK. Chromosome constitution and alkaloid content in Rawolfia L.(Apocynaceae). Cytologia. 1989;54(4):723–8.
[87] Deus B, Zenk MH. Exploitation of plant cells for the production of natural compounds. Biotechnol Bioeng. 1982;24(9):1965-74.
[88] Nikolayeva LA, Vollosovich AG. Effect of growth factors on the accumulation of biomass and alkaloids in suspension tissue culture of Rauwolfia serpentina Benth. Rastitel’nyye resursy. 1977; 13(3): 450-5.
[89] Kutney JP, Aweryn B, Chatson KB, Choi LSL, Kurz WGW. Alkaloid production in Catharanthus roseus (L.) G. Don cell cultures. XIII. Effects of bioregulators on indole alkaloid biosynthesis. Plant Cell Reports. 1985;4(5):259–62.
[90] Khouri HE, Ibrahim RK, Rideau M. Effects of nutritional and hormonal factors on growth and production of anthraquinone glucosides in cell suspension cultures of Cinchona succirubra. Plant Cell Rep. 1986;5(6):423–6.
[91] Rhodes M, Payne J, Robins R. Cell suspension cultures of Cinchona ledgeriana II. The effect of a range of auxins and cytokinins on the production of quinoline alkaloids. Planta Medica. 1986;52(03):226–9.
[92] Yoshikawa N, Fukui H, Tabata M. Effect of gibberellin A3 on shikonin production in Lithospermum callus cultures. Phytochemistry. 1986;25(3):621–2.
[93] Chung CT, Staba EJ. Effects of age and growth regulators on growth and alkaloid production in cinchona ledgeriana leaf-shoot organ cultures. Planta Med. 1987;53(2):206-10.
[94] Ohlsson AB, Björk L. Effects of gibberellic acid on cardenolide accumulation by digitalis lanata tissue cultures grown in light and darkness. J Plant Physiol. 1988;133(5):535–8.
[95] Nigra HM, Alvarez MA, Giulietti AM. The influence of auxins, light and cell differentiation on solasodine production bySolanum eleagnifolium Cav. calli. Plant Cell Rep. 1989;8(4):230-3.
[96] Ahuja A, Sambyal M, Kaushik JP. Regulation of anthraquinone production by nutritional and hormonal factors in Cassia fistula callus cultures. Fitotherapia. 1991; 62(3): 205-14.
[97] Sauerwein M, Ishimaru K, Shimomura K. Indole alkaloids in hairy roots of Amsonia elliptica. Phytochemistry. 1991;30(4):1153–5.
[98] Berlin J, Mollenschott C, DiCosmo F. Comparison of various strategies designed to optimize indole alkaloid accumulation of a cell suspension culture of Catharanthus roseus. Z Naturforsch C. 1987; 42(9-10): 1101-8.
[99] Kunakh VA. Variability in chromosomes number during plant ontogenesis. Tsitol Genet. 1978;12(2):160-73.
[100] Brodskiy VYa, Uryvayeva IV.Cell polyploidy. Proliferation and differentiation. Moscow, Nauka, 1981; 259-61.
[101] D’Amato F. Polyploidy in Cell Differentiation. Caryologia. 1989;42(3-4):183–211.
[102] Kunakh VA, Kostenyuk IA, Vollosovich AG. An increase in the amount of nuclear DNA during biosynthesis of alkaloids in the culture of Rauwolfia serpentina Benth tissue. Doklady Akad Nauk Ukr SSR. Ser B. 1986; (7):62-5.
[103] Solovyan VT, Kostenyuk IA, Kunakh VA. Genome changes in Rauwolfia serpentina Benth. cultivated in vitro. Genetika. 1987; 23(7):1200-8
[104] Solovyan VT, Zakhlenyuk OVA, Kunakh VA. Rauwolfia genome rearrenqements during culturing in vitro. Biopolym Cell. 1990; 6(1):103-6.
[105] Salina EA, Svitashev SK, Vershinin AV, et al. Heterogeneity fast and moderately reassociate DNA of cereals. Dokl Akad Nauk SSSR. 1984; 279(4): 994-9.
[106] Solovyan VT, Popovitch VA, Kunakh VA. Genome rearangement in Crepis capillaris L. (Wallr) cultured cells. Genetika. 1989; 25(10):1768-75.
[107] Gubar SI, Alkhimova EG, Lazurkevich ZV, Kunakh VA. Nucleic acid and protein content in the cell strains of Rauwolfia serpentina Benth. Fiziologiia rasteniy. 1988; 35(1):113-21
[108] Pfitzner A, Stöckigt J. Characterization of polyneuridine aldehyde esterase, a key enzyme in the biosynthesis of sarpagine/ajmaline type alkaloids. Planta Med. 1983;48(8):221-7.
[109] Stöckigt J, Pfitzner A, Keller PJ. Enzymatic formation of ajmaline. Tetrahedron Lett. 1983;24(24):2485–6.
[110] Stockigt J. Enzymatic biosynthesis of monoterpenoid indole alkaloids: aymaline, sarpagine and vindole. New Trends in Nat Prod Chem. 1986; 26: 497-511.
[111] Vakhtin YuB, Guzhova IV, Nikolaeva LA, Kunakh VA. Heterogeneity of the tissue culture of Rauwolfia serpentina in respect to its ajmalin production. Tsitologiia. 1985; 27(6):717-20.
[112] Vakhtin YuV. Genetic theory of cell populations. Leningrad, Nauka, 1980; 168 p.
[113] Nikolaeva LA, Vakhtin YuB, Guzhova IV, Smirnova II, Kunakh VA. Supporting selection in the tissue culture of Rauwolfia serpentina Benth. Doklady Akad Nauk Ukr SSR. Ser B. 1985; (7):73-5.
[114] Alpatova LK, Spiridonova EV, Konstantinov EP, Kunakh VA. Somaclonal variation - an effective source of obtaining strains - superproducer secondary metabolites of Rauwolfia serpentina. New trends in biotechnology: All-Union conf. (Pushchino, 3-5 oct., 1988). Pushchino, 1988; 81.
[115] Tremouillaux-Guiller J, Andreu F, Creche J, Chenieux J-C, Rideau M. Variability in tissue cultures of Choisya ternata. Alkaloid accumulation in protoclones and aggregate clones obtained from established strains. Plant Cell Rep. 1987;6(5):375–8.
[116] Widhotm JM. Tissue culture and plant science. London ; New York: Acad, press, 1974:502-12.
[117] Schallenberg J, Berlin J. 5-Methyltryptophan resistant cells of Catharanthus roseus. Z Naturforsch C. 1979;34(7-8):541-5.
[118] Scott AI, Mizukami H, Lee S-L. Characterization of a 5-methyltryptophan resistant strain of Catharanthus roseus cultured cells. Phytochemistry. 1979;18(5):795–8.
[119] Scott AI, Lee SL, Culver MG, Wan W, Hirata T, Gueritte F, Baxter RL, Nordlov H, Durschel CA, Mizukami H, Mackenzie NE. Indole alkaloid biosynthesis. Heterocycles. 1981; 15(2): 1257-74.
[120] Kunakh VA , Alpatova LK. Rauwolfia serpentina cell lines resistant to 5-metyltryptophan. Breeding and productivity. Genetic mechanisms of plant resistance to adverse environmental factors: Proc. reports (Irkutsk, July 8-12, 1991). Novosibirsk, 1991; 101.
[121] Mantell SG, Smith G. Cultivation factors affecting the accumulation of secondary metabolites in cell cultures and plant tissues.Biotechnology crops. Moscow, 1987; 75-104.
[122] Nosov AM. Regulation of secondary compounds synthesis in plant cell culture. Biology of cultured cells and plant biotechnology. Moscow, 1991; 6-20.
[123] Morris P, Scragg AH, Smart NJ, Stafford A. Secondary product formation by cell suspension cultures. Plant Cell Cult.: Pract. Approach. Oxford; Washington : DC, 1985; 127-67.
[124] Morris P. Regulation of product synthesis in cell cultures of catharanthus roseus. II. Comparison of production media 1. Planta Med. 1986;52(02):121–6.
[125] Yun JW, Kim JH, Yoo YJ. Optimizations of carotenoid biosynthesis by controlling sucrose concentration. Biotechnol Lett. 1990;12(12):905–10.
[126] Byun SY, Pedersen H, Chin C-K. Two-phase culture for the enhanced production of benzophenanthridine alkaloids in cell suspensions ofEschscholtzia californica. Phytochemistry. 1990;29(10):3135–9.
[127] Kreis W, Reinhard E. Two-stage cultivation of Digitalis lanata cells: semicontinuous production of deacetyllanatoside C in 20-litre airlift bioreactors. J Biotechnol. 1990;16(1-2):123–35.
[128] Tom R, Jardin B, Chavarie C, Archambault J. Effect of culture process on alkaloid production by Catharanthus roseus cells. I. Suspension cultures. J Biotechnol. 1991;21(1-2):1-19.
[129] Kislov LD, Kuzovkina IN. Secondary metabolites of tissue culture of Boenninghausenia albiflora Reichb. Plant cell culture and biotechnology. Moscow, 1986; 66-9.
[130] Gohar A, Kuzovkina IN. Alkaloids of Sirian rue callus tissues Fiziologiia rasteniy. 1988; 35(5):937-44.
[131] Kurz WGW, Chatson KB, Constabel F. Biosynthesis and Accumulation of Indole Alkaloids in Cell Suspension Cultures of Catharanthus roseus Cultivars. Proceedings in Life Sciences. 1985;143–53.
[132] Banthorpe DV, Branch SA, C.O. Njar V, Osborne MG, Watson DG. Ability of plant callus cultures to synthesize and accumulate lower terpenoids. Phytochemistry. 1986;25(3):629–36.
[133] Schütte H-R. Secondary Plant Substances: Monoterpenoid Indole Alkaloids. Prog Bot.1986;151–66.
[134] Tyler RT, Kurz WG, Panchuk BD. Photoautotrophic cell suspension cultures of periwinkle (Catharanthus roseus (L.) G. Don): Transition from heterotrophic to photoautotrophic growth. Plant Cell Rep. 1986;5(3):195-8.
[135] Oksman-Caldentey KM, Vuorela H, Strauß A, Hiltunen R. Variation in the Tropane Alkaloid Content of Hyoscyamus muticus Plants and Cell Culture Clones. Planta Med. 1987;53(4):349-54.
[136] Kulhey JP. Studies in plant tissue culture. The biosynthesis of complex natural products. Stud Natur Prod Chem. Amsterdam etc., 1988. Vol. 2(pt A):365-419.
[137] Ruyter CM, Schübel H, Stöckigt J. Novel glucoalkaloids from Rauwolfia cell cultures--acetylrauglucine and related glucosides. Z Naturforsch C. 1988;43(7-8):479-84.
[138] Banthorpe DV, Brown GD. Two unexpected coumarin derivatives from tissue cultures of compositae species. Phytochemistry. 1989;28(11):3003–7.
[139] Ikuta A, Itokawa H. The Triterpenes from Stauntonia hexaphylla Callus Tissues and Their Biosynthetic Significance. J Nat Prod. 1989;52(3):623–8.
[140] Pauthe-Dayde D, Rochd M, Henry M. Triterpenoid saponin production in callus and multiple shoot cultures of Gypsophila SPP. Phytochemistry. 1990;29(2):483–7.
[141] Sierra MI, van der Heijden R, Schripsema J, Verpoorte R. Alkaloid production in relation to differentiation in cell and tissue cultures of Tabernaemontana pandacaqui. Planta Med. 1991;57(6):543-7.
[142] Puchinina TN, Gorodnyanskaya LM, Vollosovich AG. Anatomic and morphologic study of the tissue culture of Rauwolfia serpentina. Rastitel’nyye resursy. 1980; 16(4):578-82.