Biopolym. Cell. 1985; 1(1):5-13.
Структура та функції біополімерів
В–А-перехід у ДНК і транскрипція
1Іванов В. І.
  1. Інститут молекулярної біології АН СРСР
    Москва, СРСР

Abstract

Огляд присвячено сучасному стану питання про роль А-конформації ДНК у транскрипції і її регулювання. Розглядаються три аспекти: 1 – В–А-перехід при роботі РНК-полімерази; 2 – дослідження з фізики В–А-переходу, що мають на меті отримати енергетичні характеристики та інші властивості цього перетворення (наприклад, вплив послідовності), які могли б вказувати на можливість активної ролі В–А-переходу в регуляції транскрипції; 3 – конформаційна гіпотеза щодо механізму роботи активатора бактерійних оперонів САР-білка.

References

[1] Arnott S, Fuller W, Hodgson A, Prutton I. Molecular conformations and structure transitions of RNA complementary helices and their possible biological significance. Nature. 1968;220(5167):561-4.
[2] Arnott S. The geometry of nucleic acids. Prog Biophys Mol Biol. 1970;21:265-319.
[3] Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89-110.
[4] Florentiev VL, Ivanov VI. RNA polymerase: two-step mechanism with overlapping steps. Nature. 1970;228(5271):519-22.
[5] Brahms J, Mommaerts WF. A study of conformation of nucleic acids in solution by means of circular dichroism. J Mol Biol. 1964;10:73-88.
[6] Beabealashvily RS, Ivanov VI, Minchenkova LE, Savotchkina LP. RNA polymerase-DNA complexes. I. The study of the conformation of nucleic acids at the growing point of RNA in an RNA polymerase-DNA system. Biochim Biophys Acta. 1972;259(1):35-40.
[7] Wachsman W, Anthony DD. Conformational changes in deoxyribonucleic acid during transcription. Biochemistry. 1980;19(26):5981-6.
[8] Gamper HB, Hearst JE. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell. 1982;29(1):81-90.
[9] Sugiura M, Miura K. Transcription of double-stranded RNA by Escherichia coli DNA-dependent RNA polymerase. Eur J Biochem. 1977;73(1):179-84.
[10] Kudo T, Doi RH. Free sigma factor of Escherichia coli RNA polymerase can bind to DNA. J Biol Chem. 1981;256(19):9778-81.
[11] Kudo T, Jaffe D, Doi RH. Free sigma subunit of Bacillus subtilis RNA polymerase binds to DNA. Mol Gen Genet. 1981;181(1):63-8.
[12] Losick R, Pero J. Cascades of Sigma factors. Cell. 1981;25(3):582-4.
[13] Franklin RF, Gosling RG. The structure of sodium thymonucleate fibers. Acta crystallogr., 1953, 6(8):673—683.
[14] Ivanov VI, Minchenkova LE, Minyat EE, Frank-Kamenetskii MD, Schyolkina AK. The B to A transition of DNA in solution. J Mol Biol. 1974;87(4):817-33.
[15] Malenkov G, Minchenkova L, Minyat E, Schyolkina A, Ivanov V. The nature of the B-A transition of DNA in solution. FEBS Lett. 1975;51(1):38-42.
[16] Malenkov GG, Minasian KA. B-A transition of DNA in aqueous solutions of nonelectrolytes. Mol Biol (Mosk). 1977; 11(2):352-60.
[17] Frank-Kamenetskii MD, Karapetyan AT. Theory of melting DNA complexes with low molecular weight substances. Mol Biol. 1972;6(4):500-4.
[18] Minyat EE, Ivanov VI, Kritzyn AM, Minchenkova LE, Schyolkina AK. Spermine and spermidine-induced B to A transition of DNA in solution. J Mol Biol. 1979;128(3):397-409.
[19] Minchenkova LE, Zimmer Ch. Reversion of the B to A transition induced by specific interaction with the oligopeptide distamycin A. Biopolymers. 1980, 19(4):823—831.
[20] Ivanov VI, Krylov DYu, Minyat EE, Minchenkova LE. B-A transition in DNA. J Biomol Struct Dyn. 1983;1(2):453-60.
[21] Chogovadze GI, Frank-Kamenetskii MD. Theory of DNA melting in the interval of B-A transition. Biofizika. 1983;28(5):880-2.
[22] Ivanov VI, Krylov DIu, Miniat EE. Study of cooperative transitions in DNA using phase diagrams. Mol Biol (Mosk). 1985;19(2):390-9.
[23] Pilet J, Brahms J. Dependence of B-A conformational change in DNA on base composition. Nat New Biol. 1972;236(65):99-100.
[24] Ivanov V. I., Zhurkin V. B., Zavriev S. K., Lysov Yu. P., Minchenkova L. E., Minyat E. E., Frank-Kamenetskii M. D., Schyolkina A. K. Conformational possibilities of double-helical nucleic acids: theory and experiment. Int. J. Quant. Chem., 1979, 16(1):189—201.
[25] Ivanov VI, Minchenkova LE, Minyat EE, Schyolkina AK. Cooperative transitions in DNA with no separation of strands. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:243-50.
[26] Dickerson RE. Base sequence and helix structure variation in B and A DNA. J Mol Biol. 1983;166(3):419-41.
[27] Adhya S, Garges S. How cyclic AMP and its receptor protein act in Escherichia coli. Cell. 1982;29(2):287-9.
[28] Dickson RC, Abelson J, Barnes WM, Reznikoff WS. Genetic regulation: the Lac control region. Science. 1975;187(4171):27-35.
[29] Bedouelle H, Schmeissner U, Hofnung M, Rosenberg M. Promoters of the malEFG and malK-lamB operons in Escherichia coli K12. J Mol Biol. 1982;161(4):519-31.
[30] Gilbert W. RNA polymerase. In: RNA polymerase Eds. M. Chamberlain, R. Losick. New York : Cold Spring Harbor, 1976, p. 193—203.
[31] McKay DB, Steitz TA. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature. 1981;290(5809):744-9.
[32] Kolb A, Buc H. Is DNA unwound by the cyclic AMP receptor protein? Nucleic Acids Res. 1982;10(2):473-85.
[33] Salemme FR. A model for catabolite activator protein binding to supercoiled DNA. Proc Natl Acad Sci U S A. 1982;79(17):5263-7.
[34] Garner MM, Revzin A. Stoichiometry of catabolite activator protein/adenosine cyclic 3',5'-monophosphate interactions at the lac promoter of Escherichia coli. Biochemistry. 1982;21(24):6032-6.
[35] Frederick CA, Grable J, Melia M, Samudzi C, Jen-Jacobson L, Wang BC, Greene P, Boyer HW, Rosenberg JM. Kinked DNA in crystalline complex with EcoRI endonuclease.Nature. 1984 May 24-30;309(5966):327-31.
[36] Wu HM, Crothers DM. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5-11;308(5959):509-13.
[37] Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282(5740):680-6.
[38] Zhurkin VB, Lysov YP, Ivanov VI. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res. 1979;6(3):1081-96.
[39] Wang JC. Superhelical DNA. Trends Biochem. Sci., 1980, 5(8):219—221.
[40] Kmiec EB, Holloman WK. Synapsis promoted by Ustilago rec1 protein. Cell. 1984;36(3):593-8.