Biopolym. Cell. 1985; 1(1):5-13.
Structure and Function of Biopolymers
B–A transition in DNA and transcription
1Ivanov V. I.
  1. Institute of Molecular Biology, Academy of Sciences of the USSR
    Moscow, USSR

Abstract

The paper deals with the current progress in elucidation of the significance of the A form of DNA in transcription and its regulation. The three aspects are considered: (1) the B–A transition during RNA polymerase operation, (2) the studies on the physics of the B–A transition with the aim to obtain thermodynamic parameters of this transformation and such properties as sequence effect which might be indicative of the possibility for an active role of the B–A transition in gene regulation, (3) a conformational hypothesis on the operation mechanism for the activator of bacterial operons, the CAP protein.

References

[1] Arnott S, Fuller W, Hodgson A, Prutton I. Molecular conformations and structure transitions of RNA complementary helices and their possible biological significance. Nature. 1968;220(5167):561-4.
[2] Arnott S. The geometry of nucleic acids. Prog Biophys Mol Biol. 1970;21:265-319.
[3] Ivanov VI, Minchenkova LE, Schyolkina AK, Poletayev AI. Different conformations of double-stranded nucleic acid in solution as revealed by circular dichroism. Biopolymers. 1973;12(1):89-110.
[4] Florentiev VL, Ivanov VI. RNA polymerase: two-step mechanism with overlapping steps. Nature. 1970;228(5271):519-22.
[5] Brahms J, Mommaerts WF. A study of conformation of nucleic acids in solution by means of circular dichroism. J Mol Biol. 1964;10:73-88.
[6] Beabealashvily RS, Ivanov VI, Minchenkova LE, Savotchkina LP. RNA polymerase-DNA complexes. I. The study of the conformation of nucleic acids at the growing point of RNA in an RNA polymerase-DNA system. Biochim Biophys Acta. 1972;259(1):35-40.
[7] Wachsman W, Anthony DD. Conformational changes in deoxyribonucleic acid during transcription. Biochemistry. 1980;19(26):5981-6.
[8] Gamper HB, Hearst JE. A topological model for transcription based on unwinding angle analysis of E. coli RNA polymerase binary, initiation and ternary complexes. Cell. 1982;29(1):81-90.
[9] Sugiura M, Miura K. Transcription of double-stranded RNA by Escherichia coli DNA-dependent RNA polymerase. Eur J Biochem. 1977;73(1):179-84.
[10] Kudo T, Doi RH. Free sigma factor of Escherichia coli RNA polymerase can bind to DNA. J Biol Chem. 1981;256(19):9778-81.
[11] Kudo T, Jaffe D, Doi RH. Free sigma subunit of Bacillus subtilis RNA polymerase binds to DNA. Mol Gen Genet. 1981;181(1):63-8.
[12] Losick R, Pero J. Cascades of Sigma factors. Cell. 1981;25(3):582-4.
[13] Franklin RF, Gosling RG. The structure of sodium thymonucleate fibers. Acta crystallogr., 1953, 6(8):673—683.
[14] Ivanov VI, Minchenkova LE, Minyat EE, Frank-Kamenetskii MD, Schyolkina AK. The B to A transition of DNA in solution. J Mol Biol. 1974;87(4):817-33.
[15] Malenkov G, Minchenkova L, Minyat E, Schyolkina A, Ivanov V. The nature of the B-A transition of DNA in solution. FEBS Lett. 1975;51(1):38-42.
[16] Malenkov GG, Minasian KA. B-A transition of DNA in aqueous solutions of nonelectrolytes. Mol Biol (Mosk). 1977; 11(2):352-60.
[17] Frank-Kamenetskii MD, Karapetyan AT. Theory of melting DNA complexes with low molecular weight substances. Mol Biol. 1972;6(4):500-4.
[18] Minyat EE, Ivanov VI, Kritzyn AM, Minchenkova LE, Schyolkina AK. Spermine and spermidine-induced B to A transition of DNA in solution. J Mol Biol. 1979;128(3):397-409.
[19] Minchenkova LE, Zimmer Ch. Reversion of the B to A transition induced by specific interaction with the oligopeptide distamycin A. Biopolymers. 1980, 19(4):823—831.
[20] Ivanov VI, Krylov DYu, Minyat EE, Minchenkova LE. B-A transition in DNA. J Biomol Struct Dyn. 1983;1(2):453-60.
[21] Chogovadze GI, Frank-Kamenetskii MD. Theory of DNA melting in the interval of B-A transition. Biofizika. 1983;28(5):880-2.
[22] Ivanov VI, Krylov DIu, Miniat EE. Study of cooperative transitions in DNA using phase diagrams. Mol Biol (Mosk). 1985;19(2):390-9.
[23] Pilet J, Brahms J. Dependence of B-A conformational change in DNA on base composition. Nat New Biol. 1972;236(65):99-100.
[24] Ivanov V. I., Zhurkin V. B., Zavriev S. K., Lysov Yu. P., Minchenkova L. E., Minyat E. E., Frank-Kamenetskii M. D., Schyolkina A. K. Conformational possibilities of double-helical nucleic acids: theory and experiment. Int. J. Quant. Chem., 1979, 16(1):189—201.
[25] Ivanov VI, Minchenkova LE, Minyat EE, Schyolkina AK. Cooperative transitions in DNA with no separation of strands. Cold Spring Harb Symp Quant Biol. 1983;47 Pt 1:243-50.
[26] Dickerson RE. Base sequence and helix structure variation in B and A DNA. J Mol Biol. 1983;166(3):419-41.
[27] Adhya S, Garges S. How cyclic AMP and its receptor protein act in Escherichia coli. Cell. 1982;29(2):287-9.
[28] Dickson RC, Abelson J, Barnes WM, Reznikoff WS. Genetic regulation: the Lac control region. Science. 1975;187(4171):27-35.
[29] Bedouelle H, Schmeissner U, Hofnung M, Rosenberg M. Promoters of the malEFG and malK-lamB operons in Escherichia coli K12. J Mol Biol. 1982;161(4):519-31.
[30] Gilbert W. RNA polymerase. In: RNA polymerase Eds. M. Chamberlain, R. Losick. New York : Cold Spring Harbor, 1976, p. 193—203.
[31] McKay DB, Steitz TA. Structure of catabolite gene activator protein at 2.9 A resolution suggests binding to left-handed B-DNA. Nature. 1981;290(5809):744-9.
[32] Kolb A, Buc H. Is DNA unwound by the cyclic AMP receptor protein? Nucleic Acids Res. 1982;10(2):473-85.
[33] Salemme FR. A model for catabolite activator protein binding to supercoiled DNA. Proc Natl Acad Sci U S A. 1982;79(17):5263-7.
[34] Garner MM, Revzin A. Stoichiometry of catabolite activator protein/adenosine cyclic 3',5'-monophosphate interactions at the lac promoter of Escherichia coli. Biochemistry. 1982;21(24):6032-6.
[35] Frederick CA, Grable J, Melia M, Samudzi C, Jen-Jacobson L, Wang BC, Greene P, Boyer HW, Rosenberg JM. Kinked DNA in crystalline complex with EcoRI endonuclease.Nature. 1984 May 24-30;309(5966):327-31.
[36] Wu HM, Crothers DM. The locus of sequence-directed and protein-induced DNA bending. Nature. 1984 Apr 5-11;308(5959):509-13.
[37] Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979;282(5740):680-6.
[38] Zhurkin VB, Lysov YP, Ivanov VI. Anisotropic flexibility of DNA and the nucleosomal structure. Nucleic Acids Res. 1979;6(3):1081-96.
[39] Wang JC. Superhelical DNA. Trends Biochem. Sci., 1980, 5(8):219—221.
[40] Kmiec EB, Holloman WK. Synapsis promoted by Ustilago rec1 protein. Cell. 1984;36(3):593-8.