Biopolym. Cell. 1989; 5(4):14-23.
Огляди
Прості послідовності ДНК у геномах еукаріотів
1Єрмак Г. З., 1Картель Н. А.
  1. Інститут генетики і цитології АН Білоруської РСР
    Мінськ, СРСР

Abstract

Коротко розглянуто поширення простих послідовностей ДНК у геномах різних організмів, їхня локалізація, можливі функції, походження і еволюція. Обговорено можливість участі цих послідовностей у регуляції роботи генів і рекомбінаціях.

References

[1] Gross DS, Garrard WT. The ubiquitous potential Z-forming sequence of eucaryotes, (dT-dG)n . (dC-dA)n, is not detectable in the genomes of eubacteria, archaebacteria, or mitochondria. Mol Cell Biol. 1986;6(8):3010-3.
[2] Hamada H, Petrino MG, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci U S A. 1982;79(21):6465-9.
[3] Pardue ML, Lowenhaupt K, Rich A, Nordheim A. (dC-dA)n.(dG-dT)n sequences have evolutionarily conserved chromosomal locations in Drosophila with implications for roles in chromosome structure and function. EMBO J. 1987;6(6):1781-9.
[4] Tautz D, Renz M. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 1984;12(10):4127-38.
[5] Vashakidze RP, Prangishvili DA. Sequences of Poly(dG-dT) • (dC-dA), 4 Poly(dG-dA) • (dC-dT), Poly(dG) • (dC) and Poly(dA) • (dT) in the Archaea genomes. Dokl Akad Nauk SSSR. 1987; 293(5):1243-5.
[6] Tautz D, Trick M, Dover GA. Cryptic simplicity in DNA is a major source of genetic variation. Nature. 1986 Aug 14-20;322(6080):652-6.
[7] Greaves DR, Patient RK. (AT)n is an interspersed repeat in the Xenopus genome. EMBO J. 1985;4(10):2617-26.
[8] Tokarskaia ON, Dzhumanova ET, Kupriianova NS, Ivanov PL, Ryskov AP. Isolation and characteristics of cDNA clones containing simple (GT)n/(CA)n sequences of an animal genome. Mol Gen Mikrobiol Virusol. 1986;(9):24-9.
[9] Southern EM. DNA sequences and chromosome structure. J Cell Sci Suppl. 1984;1:31-41.
[10] Delseny M, Laroche M, Penon P. Detection of sequences with Z-DNA forming potential in higher plants. Biochem Biophys Res Commun. 1983;116(1):113-20.
[11] Wildeman AG, Rasquinha I, Nazar RN. A "CAT" family of repetitive DNA sequences in Saccharomyces cerevisiae. J Biol Chem. 1986;261(29):13401-3.
[12] Ali S, Muller CR, Epplen JT. DNA finger printing by oligonucleotide probes specific for simple repeats. Hum Genet. 1986;74(3):239-43.
[13] Sun L, Paulson KE, Schmid CW, Kadyk L, Leinwand L. Non-Alu family interspersed repeats in human DNA and their transcriptional activity. Nucleic Acids Res. 1984;12(6):2669-90.
[14] Kirchhoff C. GATA tandem repeats detect minisatellite regions in blowfly DNA (Diptera: Calliphoridae). Chromosoma. 1988;96(2):107-11.
[15] Levinson G, Marsh JL, Epplen JT, Gutman GA. Cross-hybridizing snake satellite, Drosophila, and mouse DNA sequences may have arisen independently. Mol Biol Evol. 1985;2(6):494-504.
[16] Singh L, Phillips C, Jones KW. The conserved nucleotide sequences of Bkm, which define Sxr in the mouse, are transcribed. Cell. 1984;36(1):111-20.
[17] Walmsley RM, Szostak JW, Petes TD. Is there left-handed DNA at the ends of yeast chromosomes? Nature. 1983;302(5903):84-6.
[18] Qasba PK, Safaya SK. Similarity of the nucleotide sequences of rat alpha-lactalbumin and chicken lysozyme genes. Nature. 1984 Mar 22-28;308(5957):377-80.
[19] Proudfoot NJ, Gil A, Maniatis T. The structure of the human zeta-globin gene and a closely linked, nearly identical pseudogene. Cell. 1982;31(3 Pt 2):553-63.
[20] Huijser P, Hennig W, Dijkhof R. Poly(dC dA. dG dT) repeats in the Drosophila genome: a key function for dosage compensation and position effects? Chromosoma. 1987;95(3):209–15.
[21] Epplen JT, McCarrey JR, Sutou S, Ohno S. Base sequence of a cloned snake W-chromosome DNA fragment and identification of a male-specific putative mRNA in the mouse. Proc Natl Acad Sci U S A. 1982;79(12):3798-802.
[22] Nanda I, Neitzel H, Sperling K, Studer R, Epplen JT. Simple GATCA repeats characterize the X chromosomal heterochromatin of Microtus agrestis, European field vole (Rodentia, Cricetidae). Chromosoma. 1988;96(3):213-9.
[23] Lazurkin YuS. DNA: supercoiling and alternative structures. Biopolym Cell. 1986;2(6):283-92.
[24] Wang AH, Gessner RV, van der Marel GA, van Boom JH, Rich A. Crystal structure of Z-DNA without an alternating purine-pyrimidine sequence. Proc Natl Acad Sci U S A. 1985;82(11):3611-5.
[25] Wilson WD, Zuo ET, Jones RL, Zon GL, Baumstark BR. Sequence dependent electrophoretic mobilities and melting temperatures for A-T containing oligodeoxyribonucleotides. Nucleic Acids Res. 1987;15(1):105-18.
[26] Behe M, Felsenfeld G. Effects of methylation on a synthetic polynucleotide: the B--Z transition in poly(dG-m5dC).poly(dG-m5dC). Proc Natl Acad Sci U S A. 1981;78(3):1619-23.
[27] Santella RM, Grunberger D, Weinstein IB, Rich A. Induction of the Z conformation in poly(dG-dC).poly(dG-dC) by binding of N-2-acetylaminofluorene to guanine residues. Proc Natl Acad Sci U S A. 1981;78(3):1451-5.
[28] Sage E, Leng M. Conformation of poly(dG-dC) . poly(dG-dC) modified by the carcinogens N-acetoxy-N-acetyl-2-aminofluorene and N-hydroxy-N-2-aminofluorene. Proc Natl Acad Sci U S A. 1980;77(8):4597-601.
[29] Lafer EM, Moller A, Nordheim A, Stollar BD, Rich A. Antibodies specific for left-handed Z-DNA. Proc Natl Acad Sci U S A. 1981;78(6):3546-50.
[30] Ramesh N, Shouche YS, Brahmachari SK. Recognition of B and Z forms of DNA by Escherichia coli DNA polymerase I. J Mol Biol. 1986;190(4):635-8.
[31] Haniford DB, Pulleyblank DE. The in-vivo occurrence of Z DNA. J Biomol Struct Dyn. 1983;1(3):593-609.
[32] Haniford DB, Pulleyblank DE. Transition of a cloned d(AT)n-d(AT)n tract to a cruciform in vivo. Nucleic Acids Res. 1985;13(12):4343-63.
[33] Mirkin SM, Dzhugey DE, Panyutin IG, Lyamichev VI. Detection cruciform structures in supercoiled plasmid DNA. Physico-chemical Properties of bioPolymers in solution and cells: Proc. of reports. Int. symp. Pushchino, 1985; 89.
[34] Vorlichkova M, Kipr I. DNA-X: a new conformation of poly (dA-dT) * Poly (dA-dT). 16th Conf. FEBO: Proc. of reports. Moscow, 1985; 522 P.
[35] Greaves DR, Patient RK, Lilley DM. Facile cruciform formation by an (A-T)34 sequence from a Xenopus globin gene. J Mol Biol. 1985;185(3):461-78.
[36] Rodriguez-Campos A, Ellison MJ, Pérez-Grau L, Azorin F. DNA conformation and chromatin organization of a d(CA/GT)30 sequence cloned in SV40 minichromosomes. EMBO J. 1986;5(7):1727-34.
[37] Weintraub H. Assembly and propagation of repressed and depressed chromosomal states. Cell. 1985;42(3):705-11.
[38] Razin A, Riggs AD. DNA methylation and gene function. Science. 1980;210(4470):604-10.
[39] Klysik J, Stirdivant SM, Singleton CK, Zacharias W, Wells RD. Effects of 5 cytosine methylation on the B-Z transition in DNA restriction fragments and recombinant plasmids. J Mol Biol. 1983;168(1):51-71.
[40] Auble DT, Allen TL, deHaseth PL. Promoter recognition by Escherichia coli RNA polymerase. Effects of substitutions in the spacer DNA separating the -10 and -35 regions. J Biol Chem. 1986;261(24):11202-6.
[41] Horbach E, Müller-Hill B. Insertion of d(pCpG)n.d(pCpG)n into the lacZ gene of Escherichia coli inhibits expression of beta-galactosidase in vivo. J Mol Biol. 1988;202(1):157-60.
[42] Olsen O. Analysis of the effect of dG·dC homopolymer tails on expression of a mouse α-amylase cDNA gene in yeast. Carlsberg Res Commun. 1987;52(1):91–7.
[43] Russell DW, Smith M, Cox D, Williamson VM, Young ET. DNA sequences of two yeast promoter-up mutants. Nature. 1983 Aug 18-24;304(5927):652-4.
[44] Struhl K. Naturally occurring poly(dA-dT) sequences are upstream promoter elements for constitutive transcription in yeast. Proc Natl Acad Sci U S A. 1985;82(24):8419-23.
[45] Hayashi S, Kondoh H. In vivo competition of delta-crystallin gene expression by DNA fragments containing a GC box. Mol Cell Biol. 1986;6(11):4130-2.
[46] Banerjee R, Grunberger D. Enhanced expression of the bacterial chloramphenicol acetyltransferase gene in mouse cells cotransfected with synthetic polynucleotides able to form Z-DNA. Proc Natl Acad Sci U S A. 1986;83(14):4988-92.
[47] Sinden RR. Supercoiled DNA: Biological significance. J Chem Edu. 1987;64(4):294-301.
[48] Gellert M, Nash H. Communication between segments of DNA during site-specific recombination. Nature. 1987 Jan 29-Feb 4;325(6103):401-4.
[49] Umlauf SW, Cox MM. The functional significance of DNA sequence structure in a site-specific genetic recombination reaction. EMBO J. 1988;7(6):1845-52.
[50] Stringer JR. Recombination between poly[d(GT).d(CA)] sequences in simian virus 40-infected cultured cells. Mol Cell Biol. 1985;5(6):1247-59.
[51] Murphy KE, Stringer JR. RecA independent recombination of poly[d(GT)-d(CA)] in pBR322. Nucleic Acids Res. 1986;14(18):7325-40.
[52] Kmiec EB, Holloman WK. Homologous pairing of DNA molecules by Ustilago rec1 protein is promoted by sequences of Z-DNA. Cell. 1986;44(4):545-54.
[53] Klysik J, Stirdivant SM, Wells RD. Left-handed DNA. Cloning, characterization, and instability of inserts containing different lengths of (dC-dG) in Escherichia coli. J Biol Chem. 1982;257(17):10152-8.
[54] Blaho JA, Wells RD. Left-handed Z-DNA binding by the recA protein of Escherichia coli. J Biol Chem. 1987;262(13):6082-8.
[55] Rich A. Z-DNA and homologous genetic recombination. J. Cell. Biochem. 1988; Suppl. 12A:239.
[56] Singleton CK, Klysik J, Wells RD. Conformational flexibility of junctions between contiguous B- and Z-DNAs in supercoiled plasmids. Proc Natl Acad Sci U S A. 1983;80(9):2447-51.
[57] Suggs JW, Wagner RW. Nuclease recognition of an alternating structure in a d(AT)14 plasmid insert. Nucleic Acids Res. 1986;14(9):3703-16.
[58] Panayotatos N, Fontaine A. A native cruciform DNA structure probed in bacteria by recombinant T7 endonuclease. J Biol Chem. 1987;262(23):11364-8.
[59] Richards JE, Gilliam AC, Shen A, Tucker PW, Blattner FR. Unusual sequences in the murine immunoglobulin mu-delta heavy-chain region. Nature. 1983 Dec 1-7;306(5942):483-7.
[60] Kim S, Davis M, Sinn E, Patten P, Hood L. Antibody diversity: somatic hypermutation of rearranged VH genes. Cell. 1981;27(3 Pt 2):573-81.
[61] Nishioka Y, Leder P. Organization and complete sequence of identical embryonic and plasmacytoma kappa V-region genes. J Biol Chem. 1980;255(8):3691-4.
[62] Hochtl J, Zachau HG. A novel type of aberrant recombination in immunoglobulin genes and its implications for V-J joining mechanism. Nature. 1983 Mar 17-23;302(5905):260-3.
[63] Gebhard W, Zachau HG. Simple DNA sequences and dispersed repetitive elements in the vicinity of mouse immunoglobulin K light chain genes. J Mol Biol. 1983;170(2):567-73.
[64] Cohen JB, Effron K, Rechavi G, Ben-Neriah Y, Zakut R, Givol D. Simple DNA sequences in homologous flanking regions near immunoglobulin VH genes: a role in gene interaction? Nucleic Acids Res. 1982;10(11):3353-70.
[65] Nikaido T, Nakai S, Honjo T. Switch region of immunoglobulin Cmu gene is composed of simple tandem repetitive sequences. Nature. 1981;292(5826):845-8.
[66] Mellor AL, Weiss EH, Kress M, Jay G, Flavell RA. A nonpolymorphic class I gene in the murine major histocompatibility complex. Cell. 1984;36(1):139-44.
[67] Tautz D, Renz M. Simple DNA sequences of Drosophila virilis isolated by screening with RNA. J Mol Biol. 1984;172(2):229-35.
[68] Hentschel CC. Homocopolymer sequences in the spacer of a sea urchin histone gene repeat are sensitive to S1 nuclease. Nature. 1982;295(5851):714-6.
[69] Burd JF, Wells RD. Effect of incubation conditions on the nucleotide sequence of DNA products of unprimed DNA polymerase reactions. J Mol Biol. 1970;53(3):435-59.
[70] Wells RD, Ohtsuka E, Khorana HG. Studies on polynucleotides. L. Synthetic deoxyribopolynucleotides as templates for the DNA polymerase of Escherichia coli: a new double-stranded DNA-like polymer containing repeating dinucleotide sequences. J Mol Biol. 1965;14(1):221-37.
[71] Hamada H, Kakunaga T. Potential Z-DNA forming sequences are highly dispersed in the human genome. Nature. 1982;298(5872):396-8.
[72] Emerson BM, Lewis CD, Felsenfeld G. Interaction of specific nuclear factors with the nuclease-hypersensitive region of the chicken adult beta-globin gene: nature of the binding domain. Cell. 1985;41(1):21-30.
[73] Gebhard W, Zachau HG. Simple DNA sequences and dispersed repetitive elements in the vicinity of mouse immunoglobulin K light chain genes. J Mol Biol. 1983;170(2):567-73.
[74] Rogers J. Molecular biology. CACA sequences - the ends and the means? Nature. 1983 Sep 8-14;305(5930):101-2.
[75] Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191(4227):528-35.
[76] Devos R, Tavernier J, Fiers W. Slippage of DNA polymerase I during synthesis of ds-cDNA. Nucleic Acids Res. 1988;16(4):1630.
[77] Fuchs RPP, Freunds AM, Bichara M. The role of DNA structure in frameshift mutagenesis. J Cell Biochem. 1988. suppl. 12A:630.
[78] Levinson G, Gutman GA. High frequencies of short frameshifts in poly-CA/TG tandem repeats borne by bacteriophage M13 in Escherichia coli K-12. Nucleic Acids Res. 1987;15(13):5323-38.
[79] Walsh JB. Persistence of tandem arrays: implications for satellite and simple-sequence DNAs. Genetics. 1987;115(3):553-67.
[80] Marx JL. Instability in Plants and the Ghost of Lamarck: The repetitive DNA sequences in the plant genome make a major contribution to genetic instability and variability in plants. Science. 1984;224(4656):1415-6.