Biopolym. Cell. 1989; 5(4):5-14.
Моделі елонгації: два чи три сайти зв’язування тРНК на рибосомі?
1Роднина М. В.
  1. Інститут молекулярної біології і генетики АН УСРС
    Київ, СРСР

Abstract

Обговорено трисайтові моделі циклу елонгації. Представлено суперечливі дані щодо існування і властивостей третього (E) сайта на рибосомах, а також можлива функціональна роль E-сайта. Крім того, проаналізовано трисайтові моделі, які грунтуються на різній орієнтації тРНК на рибосомі за елонгації. Зроблено висновок щодо необхідності розширення класичної двосайтовой моделі Уотсона відповідно до сучасних експериментальних даних.

References

[1] Watson JD. The synthesis of proteins upon ribosomes. Bull Soc Chim Biol (Paris). 1964;46:1399-425.
[2] Rheinberger HJ, Nierhaus KH. Simultaneous binding of the 3 tRNA molecules by the ribosome of E coli. Biochem Int. 1980; 1(4):297-303.
[3] Rheinberger HJ, Sternbach H, Nierhaus KH. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981;78(9):5310-4.
[4] Hardesty B., Odom 0. W., Deng H.-Y. Movement of tRNA through ribosomes during peptide elongation: the displacement reaction model. Structure, function and genetics of ribosomes . Eds B. Hardesty, G. Kramer. New York: Springer, 1986:495-508.
[5] Saminskiy EM, Grayevskaya RA, Ivanov YuV. 70S ribosomes bind deacylated tRNA on the site, does not coincide with the A and P sites. Implementation of genetic information: Proc. All-Union symp. Palanga, 1980; 92.
[6] Grajevskaja RA, Ivanov YV, Saminsky EM. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982;128(1):47-52.
[7] Kirillov SV, Makarov EM, Semenkov YuP. Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983;157(1):91-4.
[8] Lill R, Robertson JM, Wintermeyer W. tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1984;23(26):6710-7.
[9] Wettstein FO, Noll H. Binding of transfer ribonucleic acid to ribosomes engaged in protein synthesis: number and properties of ribosomal binding sites. J Mol Biol. 1965;11:35-53.
[10] Rodnina MV, El'skaya AV, Semenkov YuP, Kirillov SV. Number of tRNA binding sites on 80 S ribosomes and their subunits. FEBS Lett. 1988;231(1):71-4.
[11] Semenkov YuP, Makarov EM, Kirillov SV. Quantitative study of interaction of deacylated tRNA with the P, A and E sites of Escherichia coli ribosomes. Biopolym. Cell. 1985; 1(4):183-93.
[12] Lill R, Robertson JM, Wintermeyer W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1986;25(11):3245-55.
[13] Kirillov SV, Semenkov YuP. Extension of Watson's model for the elongation cycle of protein biosynthesis. J Biomol Struct Dyn. 1986;4(2):263-9.
[14] Rheinberger HJ, Sternbach H, Nierhaus KH. Codon-anticodon interaction at the ribosomal E site. J Biol Chem. 1986;261(20):9140-3.
[15] Rheinberger HJ, Nierhaus KH. Testing an alternative model for the ribosomal peptide elongation cycle. Proc Natl Acad Sci U S A. 1983;80(14):4213-7.
[16] Rheinberger HJ, Nierhaus KH. Adjacent codon-anticodon interactions of both tRNAs present at the ribosomal A and P or P and E sites. FEBS Lett. 1986;204(1):97-9.
[17] Lill R, Wintermeyer W. Destabilization of codon-anticodon interaction in the ribosomal exit site. J Mol Biol. 1987;196(1):137-48.
[18] Robertson JM, Wintermeyer W. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J Mol Biol. 1987;196(3):525-40.
[19] Makarov EM. Interaction of deacylated tRNA with ribosomes of E. coli: Avtoref. dis. ...Kand. biol. nauk. Leningrad, 1986; 24 p.
[20] Paulsen H, Wintermeyer W. tRNA topography during translocation: steady-state and kinetic fluorescence energy-transfer studies. Biochemistry. 1986;25(10):2749-56.
[21] Rheinberger HJ, Nierhaus KH. Allosteric interactions between the ribosomal transfer RNA-binding sites A and E. J Biol Chem. 1986;261(20):9133-9.
[22] Nierhaus KH. New aspects of the ribosomal elongation cycle. Mol Cell Biochem. 1984;61(1):63-81.
[23] Saruyama H, Nierhaus KH. Evidence that the three-site model for the ribosomal elongation cycle is also valid in the archaebacterium Halobacterium halobium. Mol Gen Genet.1986;204(2):221–8.
[24] Rheinberger HJ, Schilling S, Nierhaus KH. The ribosomal elongation cycle: tRNA binding, translocation and tRNA release. Eur J Biochem. 1983;134(3):421-8.
[25] Dorokhov DB, Odintsov VB, Kirillov SV. Binding of aminoacyl-tRNA to A-site induces no removal of deacylated tRNA from E-site of 70S ribosome. Biopolym. Cell. 1989; 5(1):32-5.
[26] Baranov VI, Ryabova LA. Is the three-site model for the ribosomal elongation cycle sound? Biochimie. 1988;70(2):259-65.
[27] Kirillov SV, Semenkov YuP. Non-exclusion principle of Ac-Phe-tRNAPhe interaction with the donor and acceptor sites of Escherichia coli ribosomes. FEBS Lett. 1982;148(2):235-8.
[28] Odinzov VB, Kirillov SV. Interaction of N-acetyl-phenylalanyl-tRNAPhe with 70S ribosomes of Escherichia coli. Nucleic Acids Res. 1978;5(10):3871-9.
[29] Schmitt M, Neugebauer U, Bergmann C, Gassen HG, Riesner D. Binding of tRNA in different functional states to Escherichia coli ribosomes as measured by velocity sedimentation. Eur J Biochem. 1982;127(3):525-9.
[30] Noll H. Chain initiation and control of protein synthesis. Science. 1966;151(3715):1241-5.
[31] Robertson JM, Paulsen H, Wintermeyer W. Pre-steady-state kinetics of ribosomal translocation. J Mol Biol. 1986;192(2):351-60.
[32] Inoue-Yokosawa N, Ishikawa C, Kaziro Y. The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. J Biol Chem. 1974;249(13):4321-3.
[33] Misumi M, Tanaka N. Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid. Biochem Biophys Res Commun. 1980;92(2):647-54.
[34] Spirin AS. Testing the classical two-tRNA-site model for the ribosomal elongation cycle. FEBS Lett. 1984;165(2):280-4.
[35] Ishitsuka H, Kuriki Y, Kaji A. Release of transfer ribonucleic acid from ribosomes. A G factor and guanosine triphosphate-dependent reaction. J Biol Chem. 1970;245(13):3346-51.
[36] Lucas-Lenard J, Haenni AL. Release of transfer RNA during peptide chain elongation. Proc Natl Acad Sci U S A. 1969;63(1):93-7.
[37] Robertson JM, Urbanke C, Chinali G, Wintermeyer W, Parmeggiani A. Mechanism of ribosomal translocation. Translocation limits the rate of Escherichia coli elongation factor G-promoted GTP hydrolysis. J Mol Biol. 1986;189(4):653-62.
[38] Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS. Factor-free ("non-enzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol. 1976;101(4):537-52.
[39] Modolell J, Girbés T, Vázquez D. Ribosomal translocation promoted by guanylylimido diphosphate and guanylyl-methylene diphosphonate. FEBS Lett. 1975;60(1):109-13.
[40] Robertson JM, Wintermeyer W. Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe. J Mol Biol. 1981;151(1):57-79.
[41] Farber N, Cantor CR. Comparison of the structures of free and ribosome-bound tRNAPhe by using slow tritium exchange. Proc Natl Acad Sci U S A. 1980;77(9):5135-9.
[42] Peattie DA, Herr W. Chemical probing of the tRNA--ribosome complex. Proc Natl Acad Sci U S A. 1981;78(4):2273-7.
[43] Odom O., Hardesty B. An apparent conformational change in tRNAPhe that is associated with the peptidyl transferase reaction. Biochimie. 1987;69(9):925–38.
[44] Skogerson L, Moldave K. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch Biochem Biophys. 1968;125(2):497-505.
[45] Hardesty B, Culp W, McKeehan W. The sequence of reactions leading to the synthesis of a peptide bond on reticulocyte ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:331-45.
[46] Lake JA. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc Natl Acad Sci U S A. 1977;74(5):1903-7.
[47] Haenni AL, Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968;61(4):1363-9.
[48] Babkina GT, Bausk EV, Graifer DM, Karpova GG, Matasova NB. The effect of aminoacyl- or peptidyl-tRNA at the A-site on the arrangement of deacylated tRNA at the ribosomal P-site. FEBS Lett. 1984;170(2):290-4.
[49] Vladimirov SN, Graifer DM, Karpova GG, Semenkov YuP, Makhno VI, Kirillov SV. The effect of GTP hydrolysis and transpeptidation on the arrangement of aminoacyl-tRNA at the A-site of Escherichia coli 70 S ribosomes. FEBS Lett. 1985;181(2):367-72.
[50] Vladimirov SN, Graifer DM, Zenkova MA, Karpova GY, Olenina LV, Kirillov SV, Makarov EM, Makhno VI, Semenkov YuP. Photoaffinity modification of E-site of Escherichia coli ribosomes. Biopolym. Cell. 1989; 5(1):35-40.
[51] Abdurashidova GG, Turchinsky MF, Aslanov KA, Budowsky EI. Polynucleotide-protein interactions in the translation system. Identification of proteins interacting with tRNA in the A- and P-sites of E. coli ribosomes. Nucleic Acids Res. 1979;6(12):3891-909.
[52] Prince JB, Garrett RA. tRNA binding to ribosomes — two sites or more? Trends Biochem Sci. 1982;7(3):79.
[53] Nierhaus KH, Rheinberger HJ. tRNA binding to ribosomes — two sites or more. Trends Biochem Sci. 1982;7(8):280.
[54] Prince JB, Garrett RA. tRNA binding to ribosomes — two sites or more. Trends Biochem Sci. 1982;7(8):280.
[55] Kirillov SV, Semenkov IuP. Interaction of tRNA with ribosomes. Mol Biol (Mosk). 1984;18(5):1249-63.
[56] Wintermeyer W, Robertson JM. Transient kinetics of transfer ribonucleic acid binding to the ribosomal A and P sites: observation of a common intermediate complex. Biochemistry. 1982;21(9):2246-52.
[57] Kirillov SV. Mechanism of codon-anticodon interaction in ribosomes. Itogi nauki i tekhniki. Moscow, VINITI, 1983; 5-98. (Ser. Bioorg. Khiml. Vol. 18).
[58] Wintermeyer W, Lill R, Paulsen H, Robertson JM. Mechanism of Ribosomal Translocation. Structure , function and genetics of ribosomes. Eds B. Hardestv. G. Kramer. New York: Springer, 1986:523-540.