Biopolym. Cell. 1989; 5(4):5-14.
Моделі елонгації: два чи три сайти зв’язування тРНК на рибосомі?
- Інститут молекулярної біології і генетики АН УСРС
Київ, СРСР
Abstract
Обговорено трисайтові моделі циклу елонгації. Представлено суперечливі дані щодо існування і властивостей третього (E) сайта на рибосомах, а також можлива функціональна роль E-сайта. Крім того, проаналізовано трисайтові моделі, які грунтуються на різній орієнтації тРНК на рибосомі за елонгації. Зроблено висновок щодо необхідності розширення класичної двосайтовой моделі Уотсона відповідно до сучасних експериментальних даних.
Повний текст: (PDF, російською)
References
[1]
Watson JD. The synthesis of proteins upon ribosomes. Bull Soc Chim Biol (Paris). 1964;46:1399-425.
[2]
Rheinberger HJ, Nierhaus KH. Simultaneous binding of the 3 tRNA molecules by the ribosome of E coli. Biochem Int. 1980; 1(4):297-303.
[3]
Rheinberger HJ, Sternbach H, Nierhaus KH. Three tRNA binding sites on Escherichia coli ribosomes. Proc Natl Acad Sci U S A. 1981;78(9):5310-4.
[4]
Hardesty B., Odom 0. W., Deng H.-Y. Movement of tRNA through ribosomes during peptide elongation: the displacement reaction model. Structure, function and genetics of ribosomes . Eds B. Hardesty, G. Kramer. New York: Springer, 1986:495-508.
[5]
Saminskiy EM, Grayevskaya RA, Ivanov YuV. 70S ribosomes bind deacylated tRNA on the site, does not coincide with the A and P sites. Implementation of genetic information: Proc. All-Union symp. Palanga, 1980; 92.
[6]
Grajevskaja RA, Ivanov YV, Saminsky EM. 70-S ribosomes of Escherichia coli have an additional site for deacylated tRNA binding. Eur J Biochem. 1982;128(1):47-52.
[7]
Kirillov SV, Makarov EM, Semenkov YuP. Quantitative study of interaction of deacylated tRNA with Escherichia coli ribosomes. Role of 50 S subunits in formation of the E site. FEBS Lett. 1983;157(1):91-4.
[8]
Lill R, Robertson JM, Wintermeyer W. tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1984;23(26):6710-7.
[9]
Wettstein FO, Noll H. Binding of transfer ribonucleic acid to ribosomes engaged in protein synthesis: number and properties of ribosomal binding sites. J Mol Biol. 1965;11:35-53.
[10]
Rodnina MV, El'skaya AV, Semenkov YuP, Kirillov SV. Number of tRNA binding sites on 80 S ribosomes and their subunits. FEBS Lett. 1988;231(1):71-4.
[11]
Semenkov YuP, Makarov EM, Kirillov SV. Quantitative study of interaction of deacylated tRNA with the P, A and E sites of Escherichia coli ribosomes. Biopolym. Cell. 1985; 1(4):183-93.
[12]
Lill R, Robertson JM, Wintermeyer W. Affinities of tRNA binding sites of ribosomes from Escherichia coli. Biochemistry. 1986;25(11):3245-55.
[13]
Kirillov SV, Semenkov YuP. Extension of Watson's model for the elongation cycle of protein biosynthesis. J Biomol Struct Dyn. 1986;4(2):263-9.
[14]
Rheinberger HJ, Sternbach H, Nierhaus KH. Codon-anticodon interaction at the ribosomal E site. J Biol Chem. 1986;261(20):9140-3.
[15]
Rheinberger HJ, Nierhaus KH. Testing an alternative model for the ribosomal peptide elongation cycle. Proc Natl Acad Sci U S A. 1983;80(14):4213-7.
[16]
Rheinberger HJ, Nierhaus KH. Adjacent codon-anticodon interactions of both tRNAs present at the ribosomal A and P or P and E sites. FEBS Lett. 1986;204(1):97-9.
[17]
Lill R, Wintermeyer W. Destabilization of codon-anticodon interaction in the ribosomal exit site. J Mol Biol. 1987;196(1):137-48.
[18]
Robertson JM, Wintermeyer W. Mechanism of ribosomal translocation. tRNA binds transiently to an exit site before leaving the ribosome during translocation. J Mol Biol. 1987;196(3):525-40.
[19]
Makarov EM. Interaction of deacylated tRNA with ribosomes of E. coli: Avtoref. dis. ...Kand. biol. nauk. Leningrad, 1986; 24 p.
[20]
Paulsen H, Wintermeyer W. tRNA topography during translocation: steady-state and kinetic fluorescence energy-transfer studies. Biochemistry. 1986;25(10):2749-56.
[21]
Rheinberger HJ, Nierhaus KH. Allosteric interactions between the ribosomal transfer RNA-binding sites A and E. J Biol Chem. 1986;261(20):9133-9.
[22]
Nierhaus KH. New aspects of the ribosomal elongation cycle. Mol Cell Biochem. 1984;61(1):63-81.
[23]
Saruyama H, Nierhaus KH. Evidence that the three-site model for the ribosomal elongation cycle is also valid in the archaebacterium Halobacterium halobium. Mol Gen Genet.1986;204(2):221–8.
[24]
Rheinberger HJ, Schilling S, Nierhaus KH. The ribosomal elongation cycle: tRNA binding, translocation and tRNA release. Eur J Biochem. 1983;134(3):421-8.
[25]
Dorokhov DB, Odintsov VB, Kirillov SV. Binding of aminoacyl-tRNA to A-site induces no removal of deacylated tRNA from E-site of 70S ribosome. Biopolym. Cell. 1989; 5(1):32-5.
[26]
Baranov VI, Ryabova LA. Is the three-site model for the ribosomal elongation cycle sound? Biochimie. 1988;70(2):259-65.
[27]
Kirillov SV, Semenkov YuP. Non-exclusion principle of Ac-Phe-tRNAPhe interaction with the donor and acceptor sites of Escherichia coli ribosomes. FEBS Lett. 1982;148(2):235-8.
[28]
Odinzov VB, Kirillov SV. Interaction of N-acetyl-phenylalanyl-tRNAPhe with 70S ribosomes of Escherichia coli. Nucleic Acids Res. 1978;5(10):3871-9.
[29]
Schmitt M, Neugebauer U, Bergmann C, Gassen HG, Riesner D. Binding of tRNA in different functional states to Escherichia coli ribosomes as measured by velocity sedimentation. Eur J Biochem. 1982;127(3):525-9.
[31]
Robertson JM, Paulsen H, Wintermeyer W. Pre-steady-state kinetics of ribosomal translocation. J Mol Biol. 1986;192(2):351-60.
[32]
Inoue-Yokosawa N, Ishikawa C, Kaziro Y. The role of guanosine triphosphate in translocation reaction catalyzed by elongation factor G. J Biol Chem. 1974;249(13):4321-3.
[33]
Misumi M, Tanaka N. Mechanism of inhibition of translocation by kanamycin and viomycin: a comparative study with fusidic acid. Biochem Biophys Res Commun. 1980;92(2):647-54.
[34]
Spirin AS. Testing the classical two-tRNA-site model for the ribosomal elongation cycle. FEBS Lett. 1984;165(2):280-4.
[35]
Ishitsuka H, Kuriki Y, Kaji A. Release of transfer ribonucleic acid from ribosomes. A G factor and guanosine triphosphate-dependent reaction. J Biol Chem. 1970;245(13):3346-51.
[36]
Lucas-Lenard J, Haenni AL. Release of transfer RNA during peptide chain elongation. Proc Natl Acad Sci U S A. 1969;63(1):93-7.
[37]
Robertson JM, Urbanke C, Chinali G, Wintermeyer W, Parmeggiani A. Mechanism of ribosomal translocation. Translocation limits the rate of Escherichia coli elongation factor G-promoted GTP hydrolysis. J Mol Biol. 1986;189(4):653-62.
[38]
Gavrilova LP, Kostiashkina OE, Koteliansky VE, Rutkevitch NM, Spirin AS. Factor-free ("non-enzymic") and factor-dependent systems of translation of polyuridylic acid by Escherichia coli ribosomes. J Mol Biol. 1976;101(4):537-52.
[39]
Modolell J, Girbés T, Vázquez D. Ribosomal translocation promoted by guanylylimido diphosphate and guanylyl-methylene diphosphonate. FEBS Lett. 1975;60(1):109-13.
[40]
Robertson JM, Wintermeyer W. Effect of translocation on topology and conformation of anticodon and D loops of tRNAPhe. J Mol Biol. 1981;151(1):57-79.
[41]
Farber N, Cantor CR. Comparison of the structures of free and ribosome-bound tRNAPhe by using slow tritium exchange. Proc Natl Acad Sci U S A. 1980;77(9):5135-9.
[42]
Peattie DA, Herr W. Chemical probing of the tRNA--ribosome complex. Proc Natl Acad Sci U S A. 1981;78(4):2273-7.
[43]
Odom O., Hardesty B. An apparent conformational change in tRNAPhe that is associated with the peptidyl transferase reaction. Biochimie. 1987;69(9):925–38.
[44]
Skogerson L, Moldave K. Evidence for aminoacyl-tRNA binding, peptide bond synthesis, and translocase activities in the aminoacyl transfer reaction. Arch Biochem Biophys. 1968;125(2):497-505.
[45]
Hardesty B, Culp W, McKeehan W. The sequence of reactions leading to the synthesis of a peptide bond on reticulocyte ribosomes. Cold Spring Harb Symp Quant Biol. 1969;34:331-45.
[46]
Lake JA. Aminoacyl-tRNA binding at the recognition site is the first step of the elongation cycle of protein synthesis. Proc Natl Acad Sci U S A. 1977;74(5):1903-7.
[47]
Haenni AL, Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968;61(4):1363-9.
[48]
Babkina GT, Bausk EV, Graifer DM, Karpova GG, Matasova NB. The effect of aminoacyl- or peptidyl-tRNA at the A-site on the arrangement of deacylated tRNA at the ribosomal P-site. FEBS Lett. 1984;170(2):290-4.
[49]
Vladimirov SN, Graifer DM, Karpova GG, Semenkov YuP, Makhno VI, Kirillov SV. The effect of GTP hydrolysis and transpeptidation on the arrangement of aminoacyl-tRNA at the A-site of Escherichia coli 70 S ribosomes. FEBS Lett. 1985;181(2):367-72.
[50]
Vladimirov SN, Graifer DM, Zenkova MA, Karpova GY, Olenina LV, Kirillov SV, Makarov EM, Makhno VI, Semenkov YuP. Photoaffinity modification of E-site of Escherichia coli ribosomes. Biopolym. Cell. 1989; 5(1):35-40.
[51]
Abdurashidova GG, Turchinsky MF, Aslanov KA, Budowsky EI. Polynucleotide-protein interactions in the translation system. Identification of proteins interacting with tRNA in the A- and P-sites of E. coli ribosomes. Nucleic Acids Res. 1979;6(12):3891-909.
[52]
Prince JB, Garrett RA. tRNA binding to ribosomes — two sites or more? Trends Biochem Sci. 1982;7(3):79.
[53]
Nierhaus KH, Rheinberger HJ. tRNA binding to ribosomes — two sites or more. Trends Biochem Sci. 1982;7(8):280.
[54]
Prince JB, Garrett RA. tRNA binding to ribosomes — two sites or more. Trends Biochem Sci. 1982;7(8):280.
[55]
Kirillov SV, Semenkov IuP. Interaction of tRNA with ribosomes. Mol Biol (Mosk). 1984;18(5):1249-63.
[56]
Wintermeyer W, Robertson JM. Transient kinetics of transfer ribonucleic acid binding to the ribosomal A and P sites: observation of a common intermediate complex. Biochemistry. 1982;21(9):2246-52.
[57]
Kirillov SV. Mechanism of codon-anticodon interaction in ribosomes. Itogi nauki i tekhniki. Moscow, VINITI, 1983; 5-98. (Ser. Bioorg. Khiml. Vol. 18).
[58]
Wintermeyer W, Lill R, Paulsen H, Robertson JM. Mechanism of Ribosomal Translocation. Structure , function and genetics of ribosomes. Eds B. Hardestv. G. Kramer. New York: Springer, 1986:523-540.