Biopolym. Cell. 1989; 5(3):23-38.
Огляди
Вуглецева катаболітна інактивація у дріжджів – важливий спосіб регуляції на посттрансляційному рівні
- Львівське відділення, Інститут біохімії ім. О. В. Палладіна АН УРСР
Львів, СРСР
Abstract
В огляді узагальнено основні закономірності функціонування в дріжджових клітинах вуглецевої катаболітної інактивації. Запропоновано нову інтерпретацію фізіологічного сенсу цього регуляторного механізму. Представлено дані про роль сАМР, протеїнкіназ і вакуолярних протеїназ у регуляції вуглецевої катаболітної інактивації у дріжджів Saccharomyces cerevisiae і метилотрофних дріжджів. Описано унікальний механізм деградативної інактивації, що діє у метилотрофних дріжджів і пов’язаний зі «злиттям» пероксисом з вакуолями з подальшою деградацією пероксисомних ферментів. Відзначено, що генетичний контроль вуглецевої катаболітної інактивації, а також молекулярні механізми цього процесу для більшості ферментів не вивчені
Повний текст: (PDF, російською)
References
[1]
Fiticham JRS, Day PR, Radford A. Fungal genetics. Oxford: Blackwell sci. Publ., 1979. 636 P.
[2]
Harder W., Dijkhuizen L., Veldkam P. Environmental regulation of microbial metabolism. The microbe 1984. Eds D. P. Kelly, N. G. Carr Cambridge : Univ. Press, 1984:51-95.
[3]
Koen F. Regulation of Fermentative activity. Moscow, Mir, 1986; 44 P.
[4]
Jones EW, Fink GR. Regulation of amino acid and nucleotide biosynthesis in yeast. Mol. biol. of the yeast Saccharomyces: metabolism and gene exPression. New York: Cold SPring Harbor Lab., 1982:181-299.
[6]
Baumberg S. The evolution of metabolic regulation. Mol. and cell, asPects of microbial evolution. Eds M. J. Carlile, J. F. Collins, B. E. B. Moseley. Cambrige: Univ. Press, 1981:229-272.
[7]
Chock PB, Rhee SG, Stadtman ER. Interconvertible enzyme cascades in cellular regulation. Annu Rev Biochem. 1980;49:813-43.
[9]
Jones EW. The synthesis and function of proteases in Saccharomyces: genetic approaches. Annu Rev Genet. 1984;18:233-70.
[10]
Achstetter T, Wolf DH. Proteinases, proteolysis and biological control in the yeast Saccharomyces cerevisiae. Yeast. 1985;1(2):139-57.
[12]
Holzer H. Catabolite inactivation in yeast. Trends Biochem Sci. 1976;1(3):178–81.
[14]
Harder W, Veenhuis M. Physiological significance and biogenesis of yeast microbodies. Biol Res Industr Yeasts. 1988; 111:125-157.
[15]
Veenhuis M, Van Dijken JP, Harder W. The significance of peroxisomes in the metabolism of one-carbon compounds in yeasts. Adv Microb Physiol. 1983;24:1-82.
[16]
Funayama S, Gancedo JM, Gancedo C. Turnover of yeast fructose-bisphosphatase in different metabolic conditions. Eur J Biochem. 1980;109(1):61-6.
[17]
Gancedo C. Inactivation of fructose-1,6-diphosphatase by glucose in yeast. J Bacteriol. 1971;107(2):401-5.
[18]
Gancedo C, Schwerzmann K. Inactivation by glucose of phosphoenolpyruvate carboxykinase from Saccharomyces cerevisiae. Arch Microbiol. 1976;109(3):221-5.
[19]
Haarasilta S, Oura E. On the activity and regulation of anaplerotic and gluconeogenetic enzymes during the growth process of baker's yeast. The biphasic growth. Eur J Biochem. 1975;52(1):1-7.
[20]
Muller M, Muller H, Holzer H. Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae. J Biol Chem. 1981;256(2):723-7.
[21]
Ferguson JJ Jr, Boll M, Holzer H. Yeast malate dehydrogenase: enzyme inactivation in catabolite repression. Eur J Biochem. 1967;1(1):21-5.
[22]
Neeff J, Hagele E, Nauhaus J, Heer U, Mecke D. Evidence for catabolite degradation in the glucose-dependent inactivation of yeast cytoplasmic malate dehydrogenase. Eur J Biochem. 1978;87(3):489-95.
[23]
Witt I, Kronau R, Holzer H. Repression by glucose of alcohol dehydrogenase, malate dehydrogenase, isocitrate lyase and malate synthase in yeast. Biochim Biophys Acta. 1966;118(3):522-37.
[24]
Witt I, Kronau R, Holzer H. Isoenzymes of malate dehydrogenase and their regulation in Saccharomyces cerevisae. Biochim Biophys Acta. 1966;128(1):63-73.
[25]
Duntze W, Neumann D, Gancedo JM, Atzpodien W, Holzer H. Studies on the regulation and localization of the glyoxylate cycle enzymes in Saccharomyces cerevisiae. Eur J Biochem. 1969;10(1):83-9.
[26]
Takeda M. Glucose-induced inactivation of mitochondrial enzymes in the yeast Saccharomyces cerevisiae. Biochem J. 1981;198(2):281-7.
[27]
Gorts CP. Effect of glucose on the activity and the kinetics of the maltose-uptake system and of alpha-glucosidase in Saccharomyces cerevisiae. Biochim Biophys Acta. 1969;184(2):299-305.
[28]
Matern H, Holzer H. Catabolite inactivation of the galactose uptake system in yeast. J Biol Chem. 1977;252(18):6399-402.
[29]
Robertson JJ, Halvorson HO. The components of maltozymase in yeast, and their behavior during deadaptation. J Bacteriol. 1957;73(2):186-98.
[30]
Spiegelman S, Reiner JM. The formation and stabilization of an adaptive enzyme in the absence of its substrate. J Gen Physiol. 1947;31(2):175-93.
[31]
Entian K-D. Lack of carbon catabolite inactivation in a mutant of Saccharomyces cerevisiae with reduced hexokinase activity. Mol Gen Genet. 1977;158(2):201–10.
[32]
Magni G, Santarelli I, Natalini P, Ruggieri S, Vita A. Catabolite inactivation of bakers'-yeast uridine nucleosidase. Isolation and partial purification of a specific proteolytic inactivase. Eur J Biochem. 1977;75(1):77-82.
[33]
Frey J, Rohm KH. The glucose-induced inactivation of aminopeptidase I in Saccharomyces cerevisiae. FEBS Lett. 1979;100(2):261-4.
[34]
Brown HD, Satyanarayana T, Umbarger HE. Inactivation of a-isopropylmalate synthase after the addition of glucose. J Bacteriol. 1975; 121(4):959-69.
[35]
Toyoda Y, Sy J. Catabolite inactivation of fructose 1,6-bisphosphatase inKluyveromyces fragilis. Curr Microbiol. 1985;12(4):241–4.
[36]
Meisel' MN, Medvedeva GA, Kozlova TM, Pomoshchnikova NA, Novichkova AT. Formation and degradation of peroxisomes in yeasts. Mikrobiologiia. 1978;47(6):1030-6.
[37]
Veenhuis M, Zwart K, Harder W. Degradation of peroxisomes after transfer of methanol-grown Hansenula polymorpha into glucose-containing media. FEMS Microbiology Lett 1978;3(1):21–8.
[38]
Veenhuis M, Zwart KB, Harder W. Biogenesis and turnover of peroxisomes involved in the concurrent oxidation of methanol and methylamine in Hansenula polymorpha. Arch Microbiol. 1981;129(1):35–41.
[39]
Veenhuis M, Douma A, Harder W, Osumi M. Degradation and turnover of peroxisomes in the yeast Hansenula polymorpha induced by selective inactivation of peroxisomal enzymes. Arch Microbiol. 1983;134(3):193-203.
[40]
Douma AC, Veenhuis M, Koning W, Evers M, Harder W. Dihydroxyacetone synthase is localized in the peroxisomal matrix of methanol-grown Hansenula polymorpha. Arch Microbiol. 1985;143(3):237–43.
[41]
Vassarotti A, Boutry M, Colson A-M. Fructose-bisphosphatase-deficient mutants of the yeast Schizosaccharomyces pombe. Arch Microbiol. 1982;133(2):131–6.
[42]
Sibirny AA, Titorenko VI, Benevolensky SV, Tolstorukov II. On regulation of methanol metabolism in the mutant of Pichia Pinus yeast defecient in isocytrat lyase. Biokhimiia. 1986; 51(1):16-22.
[43]
Sibirny AA, Titorenko VI, Gonchar MV, Ubiyvovk VM, Ksheminskaya GP, Vitvitskaya OP. Genetic control of methanol utilization in yeasts. J Basic Microbiol. 1988;28(5):293-319.
[44]
Bormann C, Sahm H. Degradation of microbodies in relation to activities of alcohol oxidase and catalase in Candida boidinii. Arch Microbiol. 1978;117(1):67-72.
[45]
Hill DJ, Hann AC, Lloyd D. Degradative inactivation of the peroxisomal enzyme, alcohol oxidase, during adaptation of methanol-grown Candida boidinii to ethanol. Biochem J. 1985;232(3):743-50.
[46]
Sibirnyi AA, Titorenko VI. SuPPression of methanol induction isocytratlyase and malate in yeast Pichia Pinus. Biotekhnologiya. 1988; (4)2:194-6.
[47]
Entian KD. Glucose repression: a complex regulatory system in yeast. Microbiol Sci. 1986;3(12):366-71.
[48]
Gancedo JM, Gancedo C. Catabolite repression mutants of yeast 1 . FEMS Microbiol Lett. 1986;32(3-4):179–87.
[49]
Holzer H. Mechanism and function of reversible PhosPhorylation of fructose-1,6- bisPhosPhatase in yeast. Enzyme regulation by reversible PhosPhorylation - futher advances. Ed. P. Kohen. Amsterdam: Elsevier, 1984:143-154.
[50]
Eraso P, Gancedo JM. Use of glucose analogues to study the mechanism of glucose-mediated cAMP increase in yeast. FEBS Lett. 1985;191(1):51–4.
[51]
Ciriacy M, Breitenbach I. Physiological effects of seven different blocks in glycolysis in Saccharomyces cerevisiae. J Bacteriol. 1979;139(1):152-60.
[52]
Entian KD, Droll L, Mecke D. Studies on rapid reversible and non-reversible inactivation of fructose-1,6-bisphosphatase and malate dehydrogenase in wild-type and glycolytic block mutants of Saccharomyces cerevisiae. Arch Microbiol. 1983;134(3):187-192.
[53]
Entian K-D. Lack of carbon catabolite inactivation in a mutant of Saccharomyces cerevisiae with reduced hexokinase activity. Mol Gen Genet. 1977;158(2):201–10.
[54]
Entian KD, Zimmermann FK. Glycolytic enzymes and intermediates in carbon catabolite repression mutants of Saccharomyces cerevisiae. Mol Gen Genet. 1980;177(2):345-50.
[55]
Gancedo JM, Gancedo C. Inactivation of gluconeogenic enzymes in glycolytic mutants of Saccharomyces cerevisiae. Eur J Biochem. 1979;101(2):455-60.
[56]
Entian KD, Zimmermann FK, Scheel I. A partial defect in carbon catabolite repression in mutants of Saccharomyces cerevisiae with reduced hexose phosphyorylation. Mol Gen Genet. 1977;156(1):99-105.
[57]
Lenz AG, Holzer H. Rapid reversible inactivation of fructose-1,6-bisphosphatase in Saccharomyces cerivisiae by glucose. FEBS Lett. 1980;109(2):271-4.
[58]
Lopez-Boado YS, Herrero P, Gascon S, Moreno F. Catabolite inactivation of isocitrate lyase from Saccharomyces cerevisiae. Arch Microbiol. 1987;147(3):231-4.
[59]
Fraenkel D. G. Carbohydrate metabolism. Molecular biology of the yeast Saccharomyces. New York: Cold SPring Harbor Lab., 1982:1-37.
[60]
van de Poll KW, Kerkenaar A, Schamhart DH. Isolation of a regulatory mutant of fructose-1,6-diphosphatase in Saccharomyces carlsbergensis. J Bacteriol. 1974;117(3):965-70.
[61]
Navon G, Shulman RG, Yamane T, Eccleshall TR, Lam KB, Baronofsky JJ, Marmur J. Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochemistry. 1979;18(21):4487-99.
[62]
van de Poll KW, Schamhart DH. Characterization of a regulatory mutant of fructose 1,6-bisphosphatase in Saccharomyces carlsbergensis. Mol Gen Genet. 1977;154(1):61-6.
[63]
Schamhart DH, Van Den Heijkant MP, Van De Poll KW. Inactivation of fructose diphosphatase by sucrose in yeast. J Bacteriol. 1977;130(1):526-8.
[64]
Banuelos M, Gancedo C. In situ study of the glycolytic pathway in Saccharomyces cerevisiae. Arch Microbiol. 1978;117(2):197-201.
[65]
Entian KD. Genetic and biochemical evidence for hexokinase PII as a key enzyme involved in carbon catabolite repression in yeast. Mol Gen Genet. 1980;178(3):633-7.
[66]
Entian KD, Mecke D. Genetic evidence for a role of hexokinase isozyme PII in carbon catabolite repression in Saccharomyces cerevisiae. J Biol Chem. 1982;257(2):870-4.
[67]
Kopetzki E, Entian KD. Glucose repression and hexokinase isoenzymes in yeast. Isolation and characterization of a modified hexokinase PII isoenzyme. Eur J Biochem. 1985;146(3):657-62.
[68]
Entian KD, Hilberg F, Opitz H, Mecke D. Cloning of hexokinase structural genes from Saccharomyces cerevisiae mutants with regulatory mutations responsible for glucose repression. Mol Cell Biol. 1985;5(11):3035-40.
[69]
Entian KD, Frohlich KU. Saccharomyces cerevisiae mutants provide evidence of hexokinase PII as a bifunctional enzyme with catalytic and regulatory domains for triggering carbon catabolite repression. J Bacteriol. 1984;158(1):29-35.
[71]
Pall ML. GTP: a central regulator of cellular anabolism. Curr Top Cell Regul. 1985;25:1-20.
[72]
Pall ML. Is there a general paradigm of cyclic AMP action in eukaryotes? Mol Cell Biochem. 1984;58(1-2):187-91.
[73]
Siro M-R, Lovgren T. Influence of glucose on the ?-glucoside permease activity of yeast. Eur J Appl Microbiol Biotechnol. 1979;7(1):59–66.
[74]
Tortora P, Burlini N, Hanozet GM, Guerritore A. Effect of caffeine on glucose-induced inactivation of gluconeogenetic enzymes in Saccharomyces cerevisiae. A possible role of cyclic AMP. Eur J Biochem. 1982;126(3):617-22.
[75]
Tortora P, Burlini N, Leoni F, Guerritore A. Dependence on cyclic AMP of glucose-induced inactivation of yeast gluconeogenetic enzymes. FEBS Lett. 1983;155(1):39-42.
[76]
van der Plaat JB. Cyclic 3',5'-adenosine monophosphate stimulates trehalose degradation in baker's yeast. Biochem Biophys Res Commun. 1974;56(3):580-7.
[77]
Purwin C, Leidig F, Holzer H. Cyclic AMP-dependent phosphorylation of fructose-1,6-bisphosphatase in yeast. Biochem Biophys Res Commun. 1982;107(4):1482-9.
[78]
Matsumoto K, Uno I, Toh-E A, Ishikawa T, Oshima Y. Cyclic AMP may not be involved in catabolite repression in Saccharomyes cerevisiae: evidence from mutants capable of utilizing it as an adenine source. J Bacteriol. 1982;150(1):277-85.
[79]
Thevelein JM, Beullens M, Honshoven F, Hoebeeck G, Detremerie K, Griewel B, den Hollander JA, Jans AW. Regulation of the cAMP level in the yeast Saccharomyces cerevisiae: the glucose-induced cAMP signal is not mediated by a transient drop in the intracellular pH. J Gen Microbiol. 1987;133(8):2197-205.
[80]
Matsumoto K, Uno I, Ishikawa T, Oshima Y. Cyclic AMP may not be involved in catabolite repression in Saccharomyces cerevisiae: evidence from mutants unable to synthesize it. J Bacteriol. 1983;156(2):898-900.
[81]
Trevillyan JM, Pall ML. Isolation and properties of a cyclic AMP-binding protein from Neurospora. Evidence for its role as the regulatory subunit of cyclic AMP-dependent protein kinase. J Biol Chem. 1982;257(7):3978-86.
[82]
Mazon MJ, Gancedo JM, Gancedo C. Phosphorylation and inactivation of yeast fructose-bisphosphatase in vivo by glucose and by proton ionophores. A possible role for cAMP. Eur J Biochem. 1982;127(3):605-8.
[83]
Caspani G, Tortora P, Hanozet GM, Guerritore A. Glucose-stimulated cAMP increase may be mediated by intracellular acidification in Saccharomyces cerevisiae. FEBS Lett. 1985;186(1):75–9.
[84]
Purwin C, Nicolay K, Scheffers WA, Holzer H. Mechanism of control of adenylate cyclase activity in yeast by fermentable sugars and carbonyl cyanide m-chlorophenylhydrazone. J Biol Chem. 1986;261(19):8744-9.
[85]
Valle E, Bergillos L, Gascon S, Parra F, Ramos S. Trehalase activation in yeasts is mediated by an internal acidification. Eur J Biochem. 1986;154(2):247-51.
[86]
Muller D, Holzer H. Regulation of fructose-1,6-bisphosphatase in yeast by phosphorylation/dephosphorylation. Biochem Biophys Res Commun. 1981;103(3):926-33.
[87]
Mazon MJ, Gancedo JM, Gancedo C. Inactivation of yeast fructose-1,6-bisphosphatase. In vivo phosphorylation of the enzyme. J Biol Chem. 1982;257(3):1128-30.
[88]
Rittenhouse J, Harrsch PB, Kim JN, Marcus F. Amino acid sequence of the phosphorylation site of yeast (Saccharomyces cerevisiae) fructose-1,6-bisphosphatase. J Biol Chem. 1986;261(9):3939-43.
[89]
Gancedo JM, Mazon MJ, Gancedo C. Inactivation and phosphorylation of yeast fructose 1,6-bisphosphatase. Biochem Soc Trans. 1982;10(5):326-7.
[90]
Gancedo JM, Mazon MJ, Gancedo C. Kinetic differences between two interconvertible forms of fructose-1,6-bisphosphatase from Saccharomyces cerevisiae. Arch Biochem Biophys. 1982;218(2):478-82.
[91]
Tortora P, Birtel M, Lenz AG, Holzer H. Glucose-dependent metabolic interconversion of fructose-1, 6-bisphosphatase in yeast. Biochem Biophys Res Commun. 1981;100(2):688-95.
[92]
Toyoda Y, Sy J. Purification and phosphorylation of fructose-1,6-bisphosphatase from Kluyveromyces fragilis. J Biol Chem. 1984;259(14):8718-23.
[93]
Londesborough J. Cyclic nucleotide-dependent inactivation of yeast fructose 1,6-bisphosphatase by ATP. FEBS Lett. 1982;144(2):269-72.
[94]
Gancedo JM, Mazon MJ, Gancedo C. Fructose 2,6-bisphosphate activates the cAMP-dependent phosphorylation of yeast fructose-1,6-bisphosphatase in vitro. J Biol Chem. 1983;258(10):5998-9.
[95]
Pohlig G, Wingender-Drissen R, Noda T, Holzer H. Cyclic AMP and fructose-2,6-bisphosphate stimulated in vitro phosphorylation of yeast fructose-1,6-bisphosphatase. Biochem Biophys Res Commun. 1983;115(1):317-24.
[96]
Behrens MM, Mazon MJ. Yeast cAMP-dependent protein kinase can be associated to the plasma membrane. Biochem Biophys Res Commun. 1988;151(1):561-7.
[97]
Cannon JF, Tatchell K. Characterization of Saccharomyces cerevisiae genes encoding subunits of cyclic AMP-dependent protein kinase. Mol Cell Biol. 1987;7(8):2653-63.
[98]
Francois J, Van Schaftingen E, Hers HG. The mechanism by which glucose increases fructose 2,6-bisphosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. Eur J Biochem. 1984;145(1):187-93.
[99]
Hemmings BA. The mechanism, role and control of the inactivation of glutamate dehydrogenases in yeast. Biochem Soc Trans. 1982;10(5):328-9.
[100]
Ortiz CH, Maia JC, Tenan MN, Braz-Padrao GR, Mattoon JR, Panek AD. Regulation of yeast trehalase by a monocyclic, cyclic AMP-dependent phosphorylation-dephosphorylation cascade system. J Bacteriol. 1983;153(2):644-51.
[101]
Pohlig G, Wingender-Drissen R, Becker JU. Characterization of phosphorylase kinase activities in yeast. Biochem Biophys Res Commun. 1983;114(1):331-8.
[102]
Uno I, Matsumoto K, Adachi K, Ishikawa T. Genetic and biochemical evidence that trehalase is a substrate of cAMP-dependent protein kinase in yeast. J Biol Chem. 1983;258(18):10867-72.
[103]
Uno I, Matsumoto K, Adachi K, Ishikawa T. Regulation of NAD-dependent glutamate dehydrogenase by protein kinases in Saccharomyces cerevisiae. J Biol Chem. 1984;259(2):1288-93.
[104]
van Solingen P, van der Plaat JB. Partial purification of the protein system controlling the breakdown of trehalose in baker's yeast. Biochem Biophys Res Commun. 1975;62(3):553-60.
[106]
Wingender-Drissen R, Becker JU. Regulation of yeast phosphorylase by phosphorylase kinase and cAMP-dependent protein kinase. FEBS Lett. 1983;163(1):33-6.
[107]
Matsumoto K, Uno I, Kato K, Ishikawa T. Isolation and characterization of a phosphoprotein phosphatase-deficient mutant in yeast. Yeast. 1985;1(1):25-38.
[108]
Tejwani GA. Regulation of fructose-bisPhosPhatase activity. Advances in enzymology. Ed. F. F. Nord. New York: John Wiley and Sons, 1983. Vol. 54:121-194.
[109]
Francois J, Van Schaftingen E, Hers HG. Effect of benzoate on the metabolism of fructose 2,6-bisphosphate in yeast. Eur J Biochem. 1986;154(1):141-5.
[110]
Yoshino M, Murakami K. Role of AMP deaminase reaction in the control of fructose 1,6-bisphosphatase activity in yeast. Biochem Biophys Res Commun. 1985;128(2):1020-4.
[111]
Mazon MJ. Effect of glucose starvation on the nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase of yeast. J Bacteriol. 1978;133(2):780-5.
[112]
Duntze W, Neumann D, Holzer H. Glucose induced inactivation of malate dehydrogenase in intact yeast cells. Eur J Biochem. 1968;3(3):326-31.
[113]
Mazon MJ, Hemmings BA. Regulation of Saccharomyces cerevisiae nicotinamide adenine dinucleotide phosphate-dependent glutamate dehydrogenase by proteolysis during carbon starvation. J Bacteriol. 1979;139(2):686-9.
[114]
Beck I, Fink GR, Wolf DH. The intracellular proteinases and their inhibitors in yeast. A mutant with altered regulation of proteinase A inhibitor activity. J Biol Chem. 1980;255(10):4821-8.
[115]
Jusic M, Hinze H, Holzer H. Inactivation of yeast enzymes by proteinase A and B and carboxypeptidase Y from yeast. Hoppe Seylers Z Physiol Chem. 1976;357(5):735-40.
[116]
Molano J, Gancedo C. Specific inactivation of fructose 1,6-bisphosphatase from Saccharomyces cerevisiae by a yeast protease. Eur J Biochem. 1974;44(1):213-17.
[117]
Wolf DH. Proteinase action in vitro versus proteinase function in vivo: mutants shed light on intracellular proteolysis in yeast. Trends Biochem Sci. 1982;7(1):35–7.
[118]
Mechler B, Wolf DH. Analysis of proteinase A function in yeast. Eur J Biochem. 1981;121(1):47-52.
[119]
Mechler B, Muller M, Muller H, Wolf DH. In vivo biosynthesis of vacuolar proteinases in proteinase mutants of Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1982;107(3):770-8.
[120]
Wolf DH, Ehmann C. Isolation of yeast mutants lacking proteinase B activity. FEBS Lett. 1978;92(1):121–4.
[121]
Wolf DH, Ehmann C. Studies on a proteinase B mutant of yeast. Eur J Biochem. 1979;98(2):375-84.
[122]
Wolf DH, Ehmann C. Carboxypeptidase S- and carboxypeptidase Y-deficient mutants of Saccharomyces cerevisiae. J Bacteriol. 1981;147(2):418-26.
[123]
Zubenko GS, Mitchell AP, Jones EW. Septum formation, cell division, and sporulation in mutants of yeast deficient in proteinase B. Proc Natl Acad Sci U S A. 1979;76(5):2395-9.
[124]
Zubenko G., Mitchell A., Jones E. Cell division, catabolite inactivation, and sPorulation in Protease B deficient mutants of Saccharomyces cerevisiae. Limited Proteolysis in microorganisms. Eds H. Holzer, G. Cohen. Washington: DHEW Publ., 1979:49-53.
[125]
Hemmings BA, Zubenko GS, Hasilik A, Jones EW. Mutant defective in processing of an enzyme located in the lysosome-like vacuole of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1981;78(1):435-9.
[126]
Wolf DH, Weiser U. Studies on a carboxypeptidase Y mutant of yeast and evidence for a second carboxypeptidase Activity. Eur J Biochem. 1977;73(2):553-6.
[127]
Wolf DH, Fink GR. Proteinase C (carboxypeptidase Y) mutant of yeast. J Bacteriol. 1975;123(3):1150-6.
[129]
Pleiotropic mutations of Saccharomyces cerevisiae which cause dcficiencv for proteinases and other vacuole enzymes . E. Jones, G. Zubenko, R. Parker et al. Alfred Benzon svmp. Eds D. von Wettstein et al. CoPenhagen: Munksgaard, 1981:183-198.
[130]
Jones EW, Zubenko GS, Parker RR. PEP4 gene function is required for expression of several vacuolar hydrolases in Saccharomyces cerevisiae. Genetics. 1982;102(4):665-77.
[131]
Zubenko G. A genetic aPProach to the study of intracellular Proteolysis in Saccharomt. ces cerevisiae. Ph. D. Thesis. Pittsburgh: Carnegie-Mellon Univ., 1981; 231 p.
[132]
Zubenko GS, Park FJ, Jones EW. Mutations in PEP4 locus of Saccharomyces cerevisiae block final step in maturation of two vacuolar hydrolases. Proc Natl Acad Sci U S A. 1983;80(2):510-4.
[133]
Zubenko GS, Jones EW. Catabolite inactivation of gluconeogenic enzymes in mutants of yeast deficient in proteinase B. Proc Natl Acad Sci U S A. 1979;76(9):4581-5.
[134]
Funaguma T, Toyoda Y, Sy J. Catabolite inactivation of fructose 1,6-bisphosphatase and cytoplasmic malate dehydrogenase in yeast. Biochem Biophys Res Commun. 1985;130(1):467-71.
[135]
Ammerer G, Hunter CP, Rothman JH, Saari GC, Valls LA, Stevens TH. PEP4 gene of Saccharomyces cerevisiae encodes proteinase A, a vacuolar enzyme required for processing of vacuolar precursors. Mol Cell Biol. 1986;6(7):2490-9.
[136]
Woolford CA, Daniels LB, Park FJ, Jones EW, Van Arsdell JN, Innis MA. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol Cell Biol. 1986;6(7):2500-10.
[137]
Rendueles PS, Wolf DH. Proteinase function in yeast: biochemical and genetic approaches to a central mechanism of post-translational control in the eukaryote cell. FEMS Microbiol Rev. 1988;4(1):17-45.
[138]
Hill DJ, Jenkins RO, Cartledge TG, Lloyd D. Changes in proteinase activities and subcellular distribution during inactivation of alcohol oxidase in Candida boidinii. Biochem J. 1986;238(1):255-61.
[139]
Brooke AG, Dijkhuizen L, Harder W. Regulation of flavin biosynthesis in the methylotrophic yeast Hansenula polymorpha. Arch Microbiol. 1986;145(1):62–70.
[140]
Cooper TG. Nitrogen metabolism in Saccharomyces cerevisiae. Molecular biology of the yeast Saccharomyces: metabolism and gene expression. New York: Cold Spring Harbor Lab., 1982:39-99.
[141]
Demain AL. Catabolite regulation in industrial microbiology. Overproduction of microbial products . Eds V. Krumphanzl, B. Sikyta, Z. Vanek. London: Acad, Press, 1982:3-20.
[142]
Vining L.C, Chatterjee S. Catabolite rePression and the control of secondary metabolism. Eds V. KrumPhanzl, B. Sikyta, Z. Vanek. London: Acad, Press,:1982:35-46.