Biopolym. Cell. 2025; 41(2):79.
Огляди
Сучасний погляд на генетику розладів вживання психоактивних речовин і розвиток коморбідних метаболічних порушень
1, 2Башинська В. В., 1, 3Михайленко О. Ю.
  1. ДУ «Інститут громадського здоров›я ім. О.М. Марзєєва НАМН України»
    вул. Гетьмана Павла Полуботка, 50, Київ, Україна, 02094
  2. Український інститут системної біології і медицини
    вул. Дорогожицька, 3, Київ, Україна, 04119
  3. Клінікa «Verum»
    вул. Деміївська, 13, Київ, Україна, 03039

Abstract

Огляд сфокусований на основних викликах і досягненях геномних досліджень розладів вживання психоактивних речовин (РВПАР), які включають в себе наркоманію, зловживання алкоголем та куріння, а також стан досліджень проблеми коморбідностей цих захворювань з метаболічними порушеннями на прикладі метаболічного синдрому. Окремий акцент зроблено на геномних дослідженнях РВПАР і суміжних проблем в країнах Східної Європи, які є традиційно недооціненими в великих повногеномних дослідженнях асоціації (GWAS). РВПАР мають високий ступінь коморбідності та значно підвищують ризик багатьох захворювань, включаючі інші психіатричні і метаболічні. Питання патофізіологичних і генетичних причин коморбідності привертають на себе увагу в сучасних дослідженнях і вже показують деякі результати (генетична корреляція і плейотропні ефекти). В той же час, геномні дослідження РВПАР навіть в більш досліджених популяціях досі не є достатньо інформативними, а полігенні оцінки ризику незначно підвищують прогностичну здатність їснуючих моделей прогнозування ризику РВПАР. Це може бути частково пов’язано з тим, що РВПАР є складним для дослідження і визначення набором фенотипів, що зазвичай не враховується при дизайні більшості GWAS. Високий рівень полігенності цих фенотипів також підвищує необхідну кількість зразків для забезпечення достатньої статистичної потужності досліджень. Мульти-фенотипний підхід до геномних досліджень може підвищити їх ефективність для таких складних висококорельованих фенотипів.
Keywords: розлади вживання психоактивних речовин, полігенне захворювання, повногеномне дослідження асоціації, коморбідність, метаболічний синдром

References

[1] Ritchie H, Roser M. Alcohol consumption. Our World in Data. 2018 [revised 2024]. https://ourworldindata.org/alcohol-consumption
[2] GLOBAL ADULT TOBACCO SURVEY. Global Adult Tobacco Survey Ukraine 2017. https://kiis.com.ua/materials/pr/20180214_GATS/Full%20Report%20GATS%20Ukraine%202017%20ENG.pdf. Accessed 2025 Jan 18.
[3] United Nations Office on Drugs and Crime. World drug report, 2023. Vienna: United Nations; 2023. 36 p. https://www.unodc.org/unodc/en/data-and-analysis/world-drug-report-2023.html
[4] United Nations Office on Drugs and Crime. World drug report, 2019. Vienna: United Nations; 2019. 36 p. https://wdr.unodc.org/wdr2019/en/exsum.html
[5] State Institution «Institute of Forensic Psychiatry of the Ministry of Health of Ukraine». Onlain-opytuvannia shchodo poshyrenosti ta chastoty vzhyvannia okremykh narkotychnykh i psykhotropnykh rechovyn v Ukraini - 2023. https://cmhmda.org.ua/wp-content/uploads/2023/08/vzhyvannya-narkotykiv-v-ukrayini-rezultaty-opytuvannya-2023.pdf
[6] Grant BF, Saha TD, Ruan WJ, Goldstein RB, Chou SP, Jung J, Zhang H, Smith SM, Pickering RP, Huang B, Hasin DS. Epidemiology of DSM-5 Drug Use Disorder: Results From the National Epidemiologic Survey on Alcohol and Related Conditions-III. JAMA Psychiatry. 2016; 73(1):39-47.
[7] Sanchez-Roige S, Cox NJ, Johnson EO, Hancock DB, Davis LK. Alcohol and cigarette smoking consumption as genetic proxies for alcohol misuse and nicotine dependence. Drug Alcohol Depend. 2021; 221:108612.
[8] Ducci F, Goldman D. The genetic basis of addictive disorders. Psychiatr Clin North Am. 2012; 35(2):495-519.
[9] Hatoum AS, Colbert SMC, Johnson EC, Huggett SB, Deak JD, Pathak G, Jennings MV, Paul SE, Karcher NR, Hansen I, Baranger DAA, Edwards A, Grotzinger A; Substance Use Disorder Working Group of the Psychiatric Genomics Consortium; Tucker-Drob EM, Kranzler HR, Davis LK, Sanchez-Roige S, Polimanti R, Gelernter J, Edenberg HJ, Bogdan R, Agrawal A. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nat Ment Health. 2023; 1(3):210-23.
[10] Deak JD, Johnson EC. Genetics of substance use disorders: a review. Psychol Med. 2021; 51(13):2189-200.
[11] Deak JD, Zhou H, Galimberti M, Levey DF, Wendt FR, Sanchez-Roige S, Hatoum AS, Johnson EC, Nunez YZ, Demontis D, Børglum AD, Rajagopal VM, Jennings MV, Kember RL, Justice AC, Edenberg HJ, Agrawal A, Polimanti R, Kranzler HR, Gelernter J. Genome-wide association study in individuals of European and African ancestry and multi-trait analysis of opioid use disorder identifies 19 independent genome-wide significant risk loci. Mol Psychiatry. 2022; 27(10):3970-9.
[12] Zhou H, Kember RL, Deak JD, Xu H, Toikumo S, Yuan K, Lind PA, Farajzadeh L, Wang L, Hatoum AS, Johnson J, Lee H, Mallard TT, Xu J, Johnston KJA, Johnson EC, Nielsen TT, Galimberti M, Dao C, Levey DF, Overstreet C, Byrne EM, Gillespie NA, Gordon S, Hickie IB, Whitfield JB, Xu K, Zhao H, Huckins LM, Davis LK, Sanchez-Roige S, Madden PAF, Heath AC, Medland SE, Martin NG, Ge T, Smoller JW, Hougaard DM, Børglum AD, Demontis D, Krystal JH, Gaziano JM, Edenberg HJ, Agrawal A; Million Veteran Program; Justice AC, Stein MB, Kranzler HR, Gelernter J. Multi-ancestry study of the genetics of problematic alcohol use in over 1 million individuals. Nat Med. 2023; 29(12):3184-92.
[13] Blum K, Han D, Gupta A, Baron D, Braverman ER, Dennen CA, Kazmi S, Llanos-Gomez L, Badgaiyan RD, Elman I, Thanos PK, Downs BW, Bagchi D, Gondre-Lewis MC, Gold MS, Bowirrat A. Statistical Validation of Risk Alleles in Genetic Addiction Risk Severity (GARS) Test: Early Identification of Risk for Alcohol Use Disorder (AUD) in 74,566 Case-Control Subjects. J Pers Med. 2022; 12(9):1385.
[14] Johnson EC, Demontis D, Thorgeirsson TE, Walters RK, Polimanti R, Hatoum AS, Sanchez-Roige S, Paul SE, Wendt FR, Clarke TK, Lai D, Reginsson GW, Zhou H, He J, Baranger DAA, Gudbjartsson DF, Wedow R, Adkins DE, Adkins AE, Alexander J, Bacanu SA, Bigdeli TB, Boden J, Brown SA, Bucholz KK, Bybjerg-Grauholm J, Corley RP, Degenhardt L, Dick DM, Domingue BW, Fox L, Goate AM, Gordon SD, Hack LM, Hancock DB, Hartz SM, Hickie IB, Hougaard DM, Krauter K, Lind PA, McClintick JN, McQueen MB, Meyers JL, Montgomery GW, Mors O, Mortensen PB, Nordentoft M, Pearson JF, Peterson RE, Reynolds MD, Rice JP, Runarsdottir V, Saccone NL, Sherva R, Silberg JL, Tarter RE, Tyrfingsson T, Wall TL, Webb BT, Werge T, Wetherill L, Wright MJ, Zellers S, Adams MJ, Bierut LJ, Boardman JD, Copeland WE, Farrer LA, Foroud TM, Gillespie NA, Grucza RA, Harris KM, Heath AC, Hesselbrock V, Hewitt JK, Hopfer CJ, Horwood J, Iacono WG, Johnson EO, Kendler KS, Kennedy MA, Kranzler HR, Madden PAF, Maes HH, Maher BS, Martin NG, McGue M, McIntosh AM, Medland SE, Nelson EC, Porjesz B, Riley BP, Stallings MC, Vanyukov MM, Vrieze S; Psychiatric Genomics Consortium Substance Use Disorders Workgroup; Davis LK, Bogdan R, Gelernter J, Edenberg HJ, Stefansson K, Børglum AD, Agrawal A. A large-scale genome-wide association study meta-analysis of cannabis use disorder. Lancet Psychiatry. 2020; 7(12):1032-45.
[15] Toikumo S, Jennings MV, Pham BK, Lee H, Mallard TT, Bianchi SB, Meredith JJ, Vilar-Ribó L, Xu H, Hatoum AS, Johnson EC, Pazdernik VK, Jinwala Z, Pakala SR, Leger BS, Niarchou M, Ehinmowo M; Penn Medicine BioBank; Jenkins GD, Batzler A, Pendegraft R, Palmer AA, Zhou H, Biernacka JM, Coombes BJ, Gelernter J, Xu K, Hancock DB, Cox NJ, Smoller JW, Davis LK, Justice AC, Kranzler HR, Kember RL, Sanchez-Roige S. Multi-ancestry meta-analysis of tobacco use disorder identifies 461 potential risk genes and reveals associations with multiple health outcomes. Nat Hum Behav. 2024; 8(6):1177-93.
[16] Cerezo M, Sollis E, Ji Y, Lewis E, Abid A, Bircan KO, Hall P, Hayhurst J, John S, Mosaku A, Ramachandran S, Foreman A, Ibrahim A, McLaughlin J, Pendlington Z, Stefancsik R, Lambert SA, McMahon A, Morales J, Keane T, Inouye M, Parkinson H, Harris LW. The NHGRI-EBI GWAS Catalog: standards for reusability, sustainability and diversity. Nucleic Acids Res. 2025; 53(D1):D998-D1005.
[17] Lewis CM, Vassos E. Polygenic risk scores: from research tools to clinical instruments. Genome Med. 2020; 12(1):44.
[18] Savage JE, Salvatore JE, Aliev F, Edwards AC, Hickman M, Kendler KS, Macleod J, Latvala A, Loukola A, Kaprio J, Rose RJ, Chan G, Hesselbrock V, Webb BT, Adkins A, Bigdeli TB, Riley BP, Dick DM. Polygenic Risk Score Prediction of Alcohol Dependence Symptoms Across Population-Based and Clinically Ascertained Samples. Alcohol Clin Exp Res. 2018; 42(3):520-30.
[19] Barr PB, Ksinan A, Su J, Johnson EC, Meyers JL, Wetherill L, Latvala A, Aliev F, Chan G, Kuperman S, Nurnberger J, Kamarajan C, Anokhin A, Agrawal A, Rose RJ, Edenberg HJ, Schuckit M, Kaprio J, Dick DM. Using polygenic scores for identifying individuals at increased risk of substance use disorders in clinical and population samples. Transl Psychiatry. 2020; 10(1):196.
[20] Leppert B, Millard LAC, Riglin L, Davey Smith G, Thapar A, Tilling K, Walton E, Stergiakouli E. A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank. PLoS Genet. 2020; 16(5):e1008185.
[21] Quello SB, Brady KT, Sonne SC. Mood disorders and substance use disorder: a complex comorbidity. Sci Pract Perspect. 2005; 3(1):13-21.
[22] Wu LT, Ghitza UE, Zhu H, Spratt S, Swartz M, Mannelli P. Substance use disorders and medical comorbidities among high-need, high-risk patients with diabetes. Drug Alcohol Depend. 2018; 186:86-93.
[23] Eddie D, Greene MC, White WL, Kelly JF. Medical Burden of Disease Among Individuals in Recovery From Alcohol and Other Drug Problems in the United States: Findings From the National Recovery Survey. J Addict Med. 2019; 13(5):385-95.
[24] Swendsen JD, Merikangas KR. The comorbidity of depression and substance use disorders. Clin Psychol Rev. 2000; 20(2):173-89.
[25] Cross SJ, Lotfipour S, Leslie FM. Mechanisms and genetic factors underlying co-use of nicotine and alcohol or other drugs of abuse. Am J Drug Alcohol Abuse. 2017; 43(2):171-85.
[26] Ren M, Lotfipour S. Nicotine Gateway Effects on Adolescent Substance Use. West J Emerg Med. 2019; 20(5):696-709.
[27] Stephens KA, West II, Hallgren KA, Mollis B, Ma K, Donovan DM, Stuvek B, Baldwin LM. Service utilization and chronic condition outcomes among primary care patients with substance use disorders and co-occurring chronic conditions. J Subst Abuse Treat. 2020; 112S:49-55.
[28] Kendler KS, Myers J, Prescott CA. Specificity of genetic and environmental risk factors for symptoms of cannabis, cocaine, alcohol, caffeine, and nicotine dependence. Arch Gen Psychiatry. 2007; 64(11):1313-20.
[29] Cheng Y, Dao C, Zhou H, Li B, Kember RL, Toikumo S, Zhao H, Gelernter J, Kranzler HR, Justice AC, Xu K. Multi-trait genome-wide association analyses leveraging alcohol use disorder findings identify novel loci for smoking behaviors in the Million Veteran Program. Transl Psychiatry. 2023; 13(1):148.
[30] Lopez-Leon S, González-Giraldo Y, Wegman-Ostrosky T, Forero DA. Molecular genetics of substance use disorders: An umbrella review. Neurosci Biobehav Rev. 2021; 124:358-69.
[31] Marigorta UM, Lao O, Casals F, Calafell F, Morcillo-Suárez C, Faria R, Bosch E, Serra F, Bertranpetit J, Dopazo H, Navarro A. Recent human evolution has shaped geographical differences in susceptibility to disease. BMC Genomics. 2011; 12:55.
[32] Araújo DS, Wheeler HE. Genetic and environmental variation impact transferability of polygenic risk scores. Cell Rep Med. 2022; 3(7):100687.
[33] Oleksyk TK, Wolfsberger WW, Weber AM, Shchubelka K, Oleksyk OT, Levchuk O, Patrus A, Lazar N, Castro-Marquez SO, Hasynets Y, Boldyzhar P, Neymet M, Urbanovych A, Stakhovska V, Malyar K, Chervyakova S, Podoroha O, Kovalchuk N, Rodriguez-Flores JL, Zhou W, Medley S, Battistuzzi F, Liu R, Hou Y, Chen S, Yang H, Yeager M, Dean M, Mills RE, Smolanka V. Genome diversity in Ukraine. Gigascience. 2021; 10(1):giaa159.
[34] Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O'Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME; Genome Aggregation Database Consortium; Neale BM, Daly MJ, MacArthur DG. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020; 581(7809):434-43.
[35] Sieminska A, Buczkowski K, Jassem E, Niedoszytko M, Tkacz E. Influences of polymorphic variants of DRD2 and SLC6A3 genes, and their combinations on smoking in Polish population. BMC Med Genet. 2009; 10:92.
[36] Fiatal S, Tóth R, Moravcsik-Kornyicki Á, Kósa Z, Sándor J, McKee M, Ádány R. High Prevalence of Smoking in the Roma Population Seems to Have No Genetic Background. Nicotine Tob Res. 2016; 18(12):2260-7.
[37] Kukowka A, Brzuchalski B, Kurzawski M, Malinowski D, Białecka MA. ADH1B, ADH1B/C and CYP2E1 Gene Polymorphism and the Risk of Fetal Alcohol Spectrum Disorder. Genes (Basel). 2023; 14(7).
[38] Pivac N, Nedic Erjavec G, Sagud M, Nikolac Perkovic M, Tudor L, Uzun S, Kovacic Petrovic Z, Konjevod M, Dvojkovic A, Kozumplik O, Svob Strac D, Peraica T, Mimica N, Zivkovic M, Hirasawa-Fujita M, Domino EF. The association between BDNF C270T genetic variants and smoking in patients with mental disorders and in healthy controls. Prog Neuropsychopharmacol Biol Psychiatry. 2022; 113:110452.
[39] Bonea M, Coroama CI, Popp RA, Miclutia IV. The association between the CCDC88A gene polymorphism at rs1437396 and alcohol use disorder, with or without major depression disorder. Arh Hig Rada Toksikol. 2023; 74(2):127-33.
[40] Boroń A, Suchanecka A, Chmielowiec K, Śmiarowska M, Chmielowiec J, Strońska-Pluta A, Recław R, Grzywacz A. OPRM1 Gene Polymorphism in Women with Alcohol Use Disorder. Int J Mol Sci. 2024; 25(5):3067.
[41] Maciocha F, Suchanecka A, Chmielowiec K, Chmielowiec J, Ciechanowicz A, Boroń A. Correlations of the CNR1 Gene with Personality Traits in Women with Alcohol Use Disorder. Int J Mol Sci. 2024; 25(10):5174.
[42] Nikolov MA, Beltcheva O, Galabova A, Ljubenova A, Jankova E, Gergov G, Russev AA, Lynskey MT, Nelson EC, Nesheva E, Krasteva D, Lazarov P, Mitev VI, Kremensky IM, Kaneva RP, Todorov AA. No evidence of association between 118A>G OPRM1 polymorphism and heroin dependence in a large Bulgarian case-control sample. Drug Alcohol Depend. 2011; 117(1):62-5.
[43] Bashynska V, Koliada A, Murlanova K, Zahorodnia O, Borysovych Y, Moseiko V, Lushchak O, Vaiserman A. Prevalence of Some Genetic Risk Factors for Nicotine Dependence in Ukraine. Genet Res Int. 2019; 2019:2483270.
[44] Borysovych Y, Murlanova EV, Zahorodnia OO, Moseiko VV, Darvyshov NR, Bashynska VV, Koliada AK, Vaiserman OM. Genetic risk factors of smoking status and quantity in Ukrainian population. Biopolym Cell. 2019; 35(5):392.
[45] Bashynska VV, Zahorodnia O, Borysovych Yu, Zaplatnikov Yu, Vasilyeva V, Arefiev I, Krasnienkov D, Zabuga O, Darvishov N, Osichanskaya D, Karapetyan A, Melnychuk O, Boiko O, Zil’berblat GM, Turos OI, Prokopenko IO, Kaakinen MA. Genetic effects of variation at ADH1B-ADH1C locus on substance use disorders and physical health traits. Biopolym Cell. 2024; 40(3):191.
[46] Darvishov N. Personal Traits and Decision Making of Substance Addicts. Mod Probl Psychol. 2019; 46:88-113.
[47] Linskiy IV, Yi J, Korostiy VI, Grinevich EG, Lin Z. Modern lifestyle risks associated with alcohol consumption and cigarette smoking in Ukraine. J Subst Use. 2022; 27(4):440-5.
[48] Luchko K. Association of single nucleotide polymorphism (SNP) rs 2235186 of gene MAO-A with the level of agression and empathy among residents of the city Kharkiv. Visnyk of the Lviv University Series Biology. 2016; 71:137-45.
[49] Protsiuk LO, Stanislavchuk MA. The relationship of gene polymorphism of serotonin receptors 5HT2A A1438 G with anxiety and depressive disorders in patients with rheumatoid arthritis. Ukrainian therapeutical journal. 2016; 1:75-9.
[50] Rozumenko IA, Harbuzova VYu, Ataman AV. Distribution of the allelic variants according to the A69314G polymorphism of gene TNAP in smoking and non-smoking patients with acute coronary syndrome. Buk Med Herald. 2016; 20(1):137-40.
[51] Kuzmenko TV. The role of regular passive smoking in clinical peculiarities of pneumonia in infants associated with the genetic polymorphism of IL-4 (C-589T) and TNF-α (G-308A) in the Odessa region, Ukraine. Odes'kij medičnij žurnal. 2016; 2:45-9.
[52] Dvirskiy OA. Kliniko-henetychni osoblyvosti shyzofrenii, komorbidnoi z psykhichnymy ta povedinkovymy rozladamy vnaslidok vzhyvannia alkoholiu. Avtoref. dys... d-ra med. nauk: 14.01.16. Ukr. NDI sots. i sud. psykhiatrii ta narkolohii. K., 2003. 36 p.
[53] Filiptsova OV. Populiatsiino-henetychnyi analiz povedinkovykh oznak: dosvid vyvchennia naselennia Ukrainy. avtoref dys. d-ra biol. nauk: 03.00.15. DU "Nauk. tsentr radiats. medytsyny AMN Ukrainy». K., 2009. 34 p.
[54] Kalff KG, Maya-Pelzer P, Andexer A, Deuber HJ. Prevalence of the metabolic syndrome in military and civilian flying personnel. Aviat Space Environ Med. 1999; 70(12):1223-6.
[55] Xie J, Huang H, Liu Z, Li Y, Yu C, Xu L, Xu C. The associations between modifiable risk factors and nonalcoholic fatty liver disease: A comprehensive Mendelian randomization study. Hepatology. 2023; 77(3):949-64.
[56] Rodríguez-Gutiérrez PG, Colima-Fausto AG, Zepeda-Olmos PM, Hernández-Flores TJ, González-García JR, Magaña-Torres MT. Biochemical, Clinical, and Genetic Characteristics of Mexican Patients with Primary Hypertriglyceridemia, Including the First Case of Hyperchylomicronemia Syndrome Due to GPIHBP1 Deficiency. Int J Mol Sci. 2022; 24(1):465.
[57] Alves M, Laranjeira F, Correia-da-Silva G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes (Basel). 2024; 15(2):190.
[58] Zima T. Alcohol Abuse. EJIFCC. 2018; 29(4):285-9.
[59] Sun K, Liu J, Ning G. Active smoking and risk of metabolic syndrome: a meta-analysis of prospective studies. PLoS One. 2012; 7(10):e47791.
[60] Liu Z, Lin C, Suo C, Zhao R, Jin L, Zhang T, Chen X. Metabolic dysfunction-associated fatty liver disease and the risk of 24 specific cancers. Metabolism. 2022; 127:154955.
[61] Willi C, Bodenmann P, Ghali WA, Faris PD, Cornuz J. Active smoking and the risk of type 2 diabetes: a systematic review and meta-analysis. JAMA. 2007; 298(22):2654-64.
[62] Hernández-Rubio A, Sanvisens A, Bolao F, Cachón-Suárez I, Garcia-Martín C, Short A, Bataller R, Muga R. Prevalence and associations of metabolic syndrome in patients with alcohol use disorder. Sci Rep. 2022; 12(1):2625.
[63] Kember RL, Rentsch CT, Lynch J, Vujkovic M, Voight B, Justice AC; Million Veteran Program; Assimes TL, Kranzler HR. A Mendelian randomization study of alcohol use and cardiometabolic disease risk in a multi-ancestry population from the Million Veteran Program. Alcohol Clin Exp Res (Hoboken). 2024; 48(12):2256-68.
[64] Yang CW, Wei YS, Li CI, Liu CS, Lin CH, Lin CC, Li TC. Addressing causal relationship between drinking behavior and metabolic syndrome: one-sample Mendelian randomization analysis. Alcohol. 2024; 59(4):agae039.
[65] Jennings MV, Martínez-Magaña JJ, Courchesne-Krak NS, Cupertino RB, Vilar-Ribó L, Bianchi SB, Hatoum AS, Atkinson EG, Giusti-Rodriguez P, Montalvo-Ortiz JL, Gelernter J, Artigas MS; 23andMe, Inc. Research Team; Elson SL, Edenberg HJ, Fontanillas P, Palmer AA, Sanchez-Roige S. A phenome-wide association and Mendelian randomisation study of alcohol use variants in a diverse cohort comprising over 3 million individuals. EBioMedicine. 2024; 103:105086.
[66] Mykhailenko O. Correlational analysis of the dependence of the health of the population of Ukraine on smoking as a factor in the development of diseases. Environ & Health. 2024; 1:11-7.
[67] Popova S, Lange S, Shield K, Mihic A, Chudley AE, Mukherjee RAS, Bekmuradov D, Rehm J. Comorbidity of fetal alcohol spectrum disorder: a systematic review and meta-analysis. Lancet. 2016; 387(10022):978-87.
[68] Dutta DJ, Sasaki J, Bansal A, Sugai K, Yamashita S, Li G, Lazarski C, Wang L, Sasaki T, Yamashita C, Carryl H, Suzuki R, Odawara M, Imamura Kawasawa Y, Rakic P, Torii M, Hashimoto-Torii K. Alternative splicing events as peripheral biomarkers for motor learning deficit caused by adverse prenatal environments. Proc Natl Acad Sci U S A. 2023; 120(50):e2304074120.