Biopolym. Cell. 2023; 39(3):170-188.
Огляди
«Зелений» синтез металевих наночастинок. Застосування і майбутні перспективи
1Волошина І. М., 1Ластовецька Л. О., 1Зурнаджан А. А., 2Шкотова Л. В.
  1. Київський національний університет технологій та дизайну
    Вул. Мала Шияновська (Немировича-Данченка), 2, Київ, 01011, Україна
  2. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03143

Abstract

Наночастки металів наразі є одними з найбільш досліджуваних матеріалів в галузі науки і техніки. Ці метали мають розміри до ста нанометрів і відрізняються від звичайних металів своїми унікальними фізичними та хімічними властивостями. Використання наночасток металів у біомедицині є одним із найперспективніших напрямів їх застосування. Так, наприклад, наночастки золота можна використовувати для діагностики та лікуванні раку. Наночастки золота можуть бути покриті різними молекулами, які можуть націлюватися на ракові клітини та взаємодіяти з ними, дозволяючи виявляти рак і діагностувати його. Наночастки срібла можна використовувати як антимікробні засоби, оскільки срібло має високу активність проти бактерій і грибків. Також наночастки срібла можна використовувати для лікування ран, оскільки вони сприяють швидкому загоєнню та запобігають інфекціям. Металеві наночастки також використовуються в інших галузях промисловості. Так, з них можна виготовляти електроніку, покращувати властивості матеріалів, виготовляти каталізатори та багато іншого, що використовується як у побуті, так і у виробництві та вдосконаленні технологічних процесів. У цій статті обговорюється використання металевих наночасток срібла (AgNP), цинку (ZnNP), оксиду титану (TiO2NP) і золота (AuPN) у біомедицині та інших галузях.
Keywords: «зелений» біосинтез, наночастинки, нанометали, мікроорганізми

References

[1] El-Seedi HR, El-Shabasy RM, Khalifa SAM, Saeed A, Shah A, Shah R, Iftikhar FJ, Abdel-Daim MM, Omri A, Hajrahand NH, Sabir JSM, Zou X, Halabi MF, Sarhan W, Guo W. Metal nanoparticles fabricated by green chemistry using natural extracts: biosynthesis, mechanisms, and applications. RSC Adv. 2019; 9(42):24539-59.
[2] Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Awasthi MK, Pandey A. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. Environ Res. 2022; 207:112202.
[3] Siddiqi KS, Husen A, Rao RAK. A review on biosynthesis of silver nanoparticles and their biocidal properties. J Nanobiotechnology. 2018; 16(1):14.
[4] Karthik CS, Manukumar HM, Ananda AP, Nagashree S, Rakesh KP, Mallesha L, Qin HL, Umesha S, Mallu P, Krishnamurthy NB. Synthesis of novel benzodioxane midst piperazine moiety decorated chitosan silver nanoparticle against biohazard pathogens and as potential anti-inflammatory candidate: A molecular docking studies. Int J Biol Macromol. 2018; 108:489-502.
[5] Sadowski Z, Maliszewska Ih, Grochowalska B, Polowczyk I, Koźlecki T. Synthesis of silver nanoparticles using microorganisms. Materials Science-Poland. 2008; 26(2):419-24.
[6] Sadowski Z. Biosynthesis and Application of Silver and Gold Nanoparticles. Silver Nanoparticles . 2010; https://doi.org/10.5772/8508
[7] Punjabi K, Choudhary P, Samant L, Mukherjee S, Vaidya S, Chowdhary A. Biosynthesis of Nanoparticles: A Review. International J of Pharmaceut Sciences Review and Research. 2015; 30(1):219-26.
[8] Mirzaei H, Darroudi M. Zinc oxide nanoparticles: Biological synthesis and biomedical applications. Ceramics International. 2017; 43(1):709-14.
[9] Voloshyna IM, Shkotova LV, Skorokhod SO, Appolonova IYe, Zholobak NM. Lactobacillus bacteria: biological and therapeutic properties. Mikrobiol Z. 2019; 81(6):131-46.
[10] Timoszyk A, Grochowalska R. Mechanism and Antibacterial Activity of Gold Nanoparticles (AuNPs) Functionalized with Natural Compounds from Plants. Pharmaceutics. 2022; 14(12):2599.
[11] Sathishkumar P, Gu FL, Zhan Q, Palvannan T, Mohd Yusoff AR. Flavonoids mediated 'Green' nanomaterials: A novel nanomedicine system to treat various diseases – Current trends and future perspective. Materials Lett. 2018; 210:26-30.
[12] Mikhailova EO. Gold Nanoparticles: Biosynthesis and Potential of Biomedical Application. J Funct Biomater. 2021; 12(4):70.
[13] Borowik A, Butowska K, Konkel K, Banasiuk R, Derewonko N, Wyrzykowski D, Davydenko M, Cherepanov V, Styopkin V, Prylutskyy Y, Pohl P, Krolicka A, Piosik J. The Impact of Surface Functionalization on the Biophysical Properties of Silver Nanoparticles. Nanomaterials (Basel). 2019; 9(7):973.
[14] Gopinath V, Velusamy P. Extracellular biosynthesis of silver nanoparticles using Bacillus sp. GP-23 and evaluation of their antifungal activity towards Fusarium oxysporum. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 106:170-4.
[15] Dzhagan V, Mazur N, Smirnov O, Yeshchenko O, Isaieva O, Kovalenko M, Vuichyk M, Skoryk M, Pirko Y, Yemets A, Yukhymchuk V, Valakh M. SERS application of Ag nanoparticles synthesized with aqueous fungi extract. J Nanopart Res. 2023; 25(3):37.
[16] Aygün A, Özdemir S, Gülcan M, Cellat K, Şen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal. 2020; 178:112970.
[17] Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem. 2019; 9(1):1-9.
[18] Hamida RS, Ali MA, Almohawes ZN, Alahdal H, Momenah MA, Bin-Meferij MM. Green Synthesis of Hexagonal Silver Nanoparticles Using a Novel Microalgae Coelastrella aeroterrestrica Strain BA_Chlo4 and Resulting Anticancer, Antibacterial, and Antioxidant Activities. Pharmaceutics. 2022; 14(10):2002.
[19] Rauf Mohd A, Owais M, Rajpoot R, Ahmad F, Khan N, Zubair S. Biomimetically synthesized ZnO nanoparticles attain potent antibacterial activity against less susceptible: S. aureus skin infection in experimental animals. RSC Adv. 2017; 7(58): 36361-73.
[20] Kalpana VN, Kataru BAS, Sravani N, Vigneshwari T, Panneerselvam A, Devi Rajeswari V. Biosynthesis of zinc oxide nanoparticles using culture filtrates of Aspergillus niger: antimicrobial textiles and dye degradation studies. Open Nano. 2018; 3:48-55.
[21] Azizi S, Ahmad MB, Namvar F, Mohamad R. Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett. 2014; 116:275-7.
[22] Singh K, Singh J, Rawat M. Green synthesis of zinc oxide nanoparticles using Punica Granatum leaf extract and its application towards photocatalytic degradation of Coomassie brilliant blue R-250 dye. SN Appl Sci. 2019; 1(6):1-8.
[23] Li J, Li Q, Ma X, Tian B, Li T, Yu J, Dai S, Weng Y, Hua Y. Biosynthesis of gold nanoparticles by the extreme bacterium Deinococcus radiodurans and an evaluation of their antibacterial properties. Int J Nanomedicine. 2016; 11:5931-44.
[24] Nangia Y, Wangoo N, Goyal N, Shekhawat G, Suri CR. A novel bacterial isolate Stenotrophomonas maltophilia as living factory for synthesis of gold nanoparticles. Microb Cell Fact. 2009; 8:39.
[25] Singh J, Kumar S, Alok A, Upadhyay SK, Rawat M, Tsang DCW, Bolan N, Kim K-H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Prod. 2019; 214:1061-70.
[26] Subhapriya S, Gomathipriya P. Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog. 2018; 116:215-20.
[27] Saka A, Shifera Y, Jule LT, Badassa B, Nagaprasad N, Shanmugam R, Priyanka Dwarampudi L, Seenivasan V, Ramaswamy K. Biosynthesis of TiO2 nanoparticles by Caricaceae (Papaya) shell extracts for antifungal application. Sci Rep. 2022; 12(1):15960.
[28] Metwally RA, El Nady J, Ebrahim S, El Sikaily A, El-Sersy NA, Sabry SA, Ghozlan HA. Biosynthesis, characterization and optimization of TiO2 nanoparticles by novel marine halophilic Halomonas sp. RAM2: application of natural dye-sensitized solar cells. Microb Cell Fact. 2023; 22(1):78.
[29] Leopold LF, Coman C, Clapa D, Oprea I, Toma A, Iancu ȘD, Barbu-Tudoran L, Suciu M, Ciorîță A, Cadiș AI, Mureșan LE, Perhaița IM, Copolovici L, Copolovici DM, Copaciu F, Leopold N, Vodnar DC, Coman V. The effect of 100-200 nm ZnO and TiO2 nanoparticles on the in vitro-grown soybean plants. Colloids Surf B Biointerfaces. 2022; 216:112536.
[30] Mishra J, Kour A, Amin DS, Panda JJ. Biofabricated smart-nanosilve: Promising armamentarium for cancer and pathogenic diseases. Colloid and Interface Sci Communications. 2021; 44:100459.
[31] Calderón-Jiménez B, Johnson ME, Montoro Bustos AR, Murphy KE, Winchester MR, Vega Baudrit JR. Silver Nanoparticles: Technological Advances, Societal Impacts, and Metrological Challenges. Front Chem. 2017; 5:6.
[32] Lee SH, Jun BH. Silver Nanoparticles: Synthesis and Application for Nanomedicine. Int J Mol Sci. 2019; 20(4):865.
[33] Anil Kumar S, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI. Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett. 2007; 29(3):439-45.
[34] Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine. 2010; 6(1):103-9.
[35] Prasher P, Sharma M, Mudila H, Gupta G, Sharma AK, Kumar D, Bakshi HA, Negi P, Kapoor DN, Chellappan DK, Tambuwala MM, Dua K. Emerging trends in clinical implications of bio-conjugated silver nanoparticles in drug delivery. Colloid and Interface Sci Communications. 2020; 35:100244.
[36] Radhakrishnan VS, Reddy Mudiam MK, Kumar M, Dwivedi SP, Singh SP, Prasad T. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans). Int J Nanomedicine. 2018; 13:2647-63.
[37] Vlăsceanu GM, Marin Ş, Ţiplea RE, Bucur IR, Lemnaru M, Marin MM, Grumezescu AM, Andronescu E. Silver nanoparticles in cancer therapy. Nanobiomater in Cancer Therapy. 2016; 7:29-56.
[38] Mishra J, Kour A, Amin DS, Panda JJ. Biofabricated smart-nanosilver: Promising armamentarium for cancer and pathogenic diseases. Colloid and Interface Sci Communications. 2021; 44:100459.
[39] Gitipour A, Al-Abed SR, Thiel SW, Scheckel KG, Tolaymat T. Nanosilver as a disinfectant in dental unit waterlines: Assessment of the physicochemical transformations of the AgNPs. Chemosphere. 2017; 173:245-52.
[40] Chaloupka K, Malam Y, Seifalian AM. Nanosilver as a new generation of nanoproduct in biomedical applications. Trends Biotechnol. 2010; 28(11):580-8.
[41] Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004; 25(18):4383-91.
[42] Huang Y, Li X, Liao Z, Zhang G, Liu Q, Tang J, Peng Y, Liu X, Luo Q. A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns. 2007; 33(2):161-6.
[43] Kamal Kumar V, Muthukrishnan S, Rajalakshmi R. Phytostimulatory effect of phytochemical fabricated nanosilver (AgNPs) on Psophocarpus tetragonolobus (L.) DC. seed germination: An insight from antioxidative enzyme activities and genetic similarity studies. Current Plant Biology. 2020; 23:100158.
[44] Uikey P, Vishwakarma K. Review of zinc oxide (ZnO) nanoparticles applications and properties. International J of Emerging Technology in Computer Science & Electronics (IJETCSE). 2016; 21(2). ISSN: 0976-1353.
[45] Fortunati E, Puglia D, Armentano I, Valdés A, Ramos M, Juárez N, Garrigós MC, Kenny JM. Multifunctional antimicrobial nanocomposites for food packaging applications. Food Preservation. 2017; 265-303.
[46] Arrieta MP, Peponi L, López D, López J, Kenny JM. An overview of nanoparticles role in the improvement of barrier properties of bioplastics for food packaging applications. Food Packaging. 2017; 391-424.
[47] Fang Y, Wen X, Yang S, Pang Q, Ding L, Wang J, Ge W. Hydrothermal Synthesis and Optical Properties of ZnO Nanostructured Films Directly Grown from/on Zinc Substrates. J Sol-Gel Sci Technol. 2005; 36(2):227-34.
[48] Reddy KM, Feris K, Bell J, Wingett DG, Hanley C, Punnoose A. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl Phys Lett. 2007; 90(213902):2139021-3.
[49] Jones N, Ray B, Ranjit KT, Manna AC. Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett. 2008; 279(1):71-6.
[50] Malik J. ZnO Nanoparticles: Growth, Properties, and Applications. Research. 2015; 2.
[51] Nafchi AM, Nassiri R, Sheibani S, Ariffin F, Karim AA. Preparation and characterization of bionanocomposite films filled with nanorod-rich zinc oxide. Carbohydr Polym. 2013; 96(1):233-9.
[52] Rohova M, Kovalenko V, Tkachenko V, Lych I, Voloshyna I. Green biosynthesis of zinc nanoparticles. ICAMS Proceedings of the International Conference on Advanced Materials and Systems, 2022; 457-60.
[53] Glushchenko NN, Skalny AV. Zinc nanoparticles toxicity and biological properties. Actual Problems Transport Med. 2010; 3(21):118121.
[54] Zhao D, Song H, Hao L, Liu X, Zhang L, Lv Y. Luminescent ZnO quantum dots for sensitive and selective detection of dopamine. Talanta. 2013; 107:133-9.
[55] Ng SM, Wong DS, Phung JH, Chin SF, Chua HS. Integrated miniature fluorescent probe to leverage the sensing potential of ZnO quantum dots for the detection of copper (II) ions. Talanta. 2013; 116:514-9.
[56] Zhang L, Ding Y, Povey M, York D. ZnO nanofluids-A potential antibacterial agent. Prog Nat Sci. 2008; 18(8):939-44.
[57] Zhang P, Liu W. ZnO QD@PMAA-co-PDMAEMA nonviral vector for plasmid DNA delivery and bioimaging. Biomaterials. 2010; 31(11):3087-94.
[58] Hughes G, McLean NR. Zinc oxide tape: a useful dressing for the recalcitrant finger-tip and soft-tissue injury. Arch Emerg Med. 1988; 5(4):223-7.
[59] Voloshyna IM, Shkotova LV. The use of probiotic microorganisms in cosmeceuticals. Biopolym Cell. 2022; 38(1):3-8.
[60] Pflüecker F, Büenger J, Hitzel S, Witte G, Beck J, Lergenmüeller M, Driller H. Complete photo protection: Going beyond visible endpoints. SÖFW-journal. 2005; 131(7):20-30.
[61] Morganti P. Use and potential of nanotechnology in cosmetic dermatology. Clin Cosmet Investig Dermatol. 2010; 3:5-13.
[62] Gul H, Javed HMA, Awais M, Javaid MY, Khan MI, Arif M, Alshahrani MY, Khalil RMA, Khan FS, Galal AM. TiO2 nanoparticles functionalized with marigold for antioxidant role to enhance the skin protection. Biomass Conv Bioref. 2022.
[63] Valentín L, Nousiainen A, Mikkonen A. Introduction to Organic Contaminants in Soil: Concepts and Risks. Emerging Organic Contaminants in Sludges. Springer: Berlin/Heidelberg, Germany. 2013; 24:1-29.
[64] Sankar R, Rizwana K, Shivashangari KS, Ravikumar V. Ultra-rapid photocatalytic activity of Azadirachta indica engineered colloidal titanium dioxide nanoparticles. Appl Nanosci. 2014; 5(6):731-6.
[65] Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD. A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ. 2012; 125:331-49.
[66] Valencia S, Vargas X, Rios L, Restrepo G, Marín JM. Sol-gel and low-temperature solvothermal synthesis of photoactive nano-titanium dioxide. J Photochem Photobiol A Chem. 2012; 251:175-81.
[67] S Muniandy S, Mohd Kaus NH, Jiang Z-T, Altarawneh M, Lee HL. Green synthesis of mesoporous anatase TiO2 nanoparticles and their photocatalytic activities. RSC Adv. 2017; 7(76):48083-94.
[68] Shimi AK, Ahmed HM, Wahab M, Katheria S, Wabaidur SM, Eldesoky GE, Islam MA, Rane KP. Synthesis and Applications of Green Synthesized TiO2 Nanoparticles for Photocatalytic Dye Degradation and Antibacterial Activity. J of Nanomaterials. 2022; 2022:1-9.
[69] Tsuang YH, Sun JS, Huang YC, Lu CH, Chang WH, Wang CC. Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif Organs. 2008; 32(2):167-74.
[70] Jayaseelan C, Rahuman AA, Roopan SM, Kirthi AV, Venkatesan J, Kim SK, Iyappan M, Siva C. Biological approach to synthesize TiO2 nanoparticles using Aeromonas hydrophila and its antibacterial activity. Spectrochim Acta A Mol Biomol Spectrosc. 2013; 107:82-9.
[71] Subhapriya S, Gomathipriya P. Green synthesis of titanium dioxide (TiO2) nanoparticles by Trigonella foenum-graecum extract and its antimicrobial properties. Microb Pathog. 2018; 116:215-20.
[72] Akhtar S, Shahzad K, Mushtaq S, Ali I, Rafe MH, Fazal-ul-Karim SM. Antibacterial and antiviral potential of colloidal Titanium dioxide TiO2 nanoparticles suitable for biological applications. Materials Research Express. 2019; 6(10):105409.
[73] Alrousan DM, Dunlop PS, McMurray TA, Byrne JA. Photocatalytic inactivation of E. coli in surface water using immobilised nanoparticle TiO2 films. Water Res. 2009; 43(1):47-54.
[74] Othman SH, Abd Salam NR, Zainal N, Kadir Basha R, Talib RA. Antimicrobial Activity of TiO2 Nanoparticle-Coated Film for Potential Food Packaging Applications. International J of Photoenergy. 2014; 2014:1-6.
[75] Wang T, Jiang H, Wan L, Zhao Q, Jiang T, Wang B, Wang S. Potential application of functional porous TiO2 nanoparticles in light-controlled drug release and targeted drug delivery. Acta Biomater. 2015; 13:354-63.
[76] Lian W, Yang L, Joseph S, Shi W, Bian R, Zheng J, Li L, Shan S, Pan G. Utilization of biochar produced from invasive plant species to efficiently adsorb Cd (II) and Pb (II). Bioresour Technol. 2020; 317:124011.
[77] Irshad MA, Nawaz R, Rehman MZU, Adrees M, Rizwan M, Ali S, Ahmad S, Tasleem S. Synthesis, characterization and advanced sustainable applications of titanium dioxide nanoparticles: A review. Ecotoxicol Environ Saf. 2021; 212:111978.
[78] Edmiston PL, Gilbert AR, Harvey Z, Mellor N. Adsorption of short chain carboxylic acids from aqueous solution by swellable organically modified silica materials. Adsorption. 2018; 24(1):53-63.
[79] Dykman L, Khlebtsov N. Gold nanoparticles in biomedical applications: recent advances and perspectives. Chem Soc Rev. 2012; 41(6):2256-82.
[80] Hu K, Chen X, Chen W, Zhang L, Li J, Ye J, Zhang Y, Zhang L, Li CH, Yin L, Guan YQ. Neuroprotective effect of gold nanoparticles composites in Parkinson's disease model. Nanomedicine. 2018; 14(4):1123-36.
[81] Lee H, Kim Y, Park A, Nam JM. Amyloid-β aggregation with gold nanoparticles on brain lipid bilayer. Small. 2014; 10(9):1779-89.
[82] Gao N, Sun H, Dong K, Ren J, Qu X. Gold-nanoparticle-based multifunctional amyloid-β inhibitor against Alzheimer's disease. Chemistry. 2015; 21(2):829-35.
[83] Xue J, Liu T, Liu Y, Jiang Y, Seshadri VDD, Mohan SK, Ling L. Neuroprotective effect of biosynthesised gold nanoparticles synthesised from root extract of Paeonia moutan against Parkinson disease - In vitro & In vivo model. J Photochem Photobiol B. 2019; 200:111635.
[84] Yeh LC, Chen SP, Liao FH, Wu TH, Huang YT, Lin SY. The Bioactive Core and Corona Synergism of Quantized Gold Enables Slowed Inflammation and Increased Tissue Regeneration in Wound Hypoxia. Int J Mol Sci. 2020; 21(5):1699.
[85] Sproul EP, Nandi S, Chee E, Sivadanam S, Igo BJ, Schreck L, Brown AC. Development of biomimetic antimicrobial platelet-like particles comprised of microgel nanogold composites. Regen Eng Transl Med. 2020; 6:299-309.
[86] Muthuvel A, Adavallan K, Balamurugan K, Krishnakumar N. Biosynthesis of gold nanoparticles using Solanum nigrum leaf extract and screening their free radical scavenging and antibacterial properties. Biomed Prev Nutr. 2014; 4(2):325-32.
[87] Annamalai A, Christina VL, Sudha D, Kalpana M, Lakshmi PT. Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf B Biointerfaces. 2013; 108:60-5.
[88] Bindhu MR, Vijaya Rekha P, Umamaheswari T, Umadevi M. Antibacterial activities of Hibiscus cannabinus stem-assisted silver and gold nanoparticles. Mater Lett. 2014; 131:194-7.
[89] Khan MA, Khan MJ. Nano-gold displayed anti-inflammatory property via NF-kB pathways by suppressing COX-2 activity. Artif Cells Nanomed Biotechnol. 2018; 46(sup1):1149-58.
[90] Yang K, Liao Z, Wu Y, Li M, Guo T, Lin J, Li Y, Hu C. Curcumin and Glu-GNPs Induce Radiosensitivity against Breast Cancer Stem-Like Cells. Biomed Res Int. 2020; 2020:3189217.
[91] Cai Y, Zhang J, Chen NG, Shi Z, Qiu J, He C, Chen M. Recent Advances in Anticancer Activities and Drug Delivery Systems of Tannins. Med Res Rev. 2017; 37(4):665-701.
[92] Sperling RA, Rivera Gil P, Zhang F, Zanella M, Parak WJ. Biological applications of gold nanoparticles. Chem Soc Rev. 2008; 37(9):1896-908.
[93] Castañeda MT, Alegret S, Merkoçi A. Electrochemical Sensing of DNA Using Gold Nanoparticles. Nanobiomaterial Application in Electrochemical Analysis. 2007; 19(7-8):743-53.
[94] Guo S, Wang E. Synthesis and electrochemical applications of gold nanoparticles. Anal Chim Acta. 2007; 598(2):181-92.
[95] Merkoçi A, Aldavert M, Marı́n S, Alegret S. New materials for electrochemical sensing V: Nanoparticles for DNA labelling. TrAC Trends in Analytical Chemistry. 2005; 24(4):341-9.
[96] Li Z, Jin R, Mirkin CA, Letsinger RL. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 2002; 30(7):1558-62.
[97] Qin L, Zeng G, Lai C, Huang D, Xu P, Zhang C, Cheng M, Liu X, Liu S, Li B, Yi H. "Gold rush" in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coordination Chemistry Reviews. 2018; 359:1-31.