Biopolym. Cell. 2022; 38(3):205-212.
Біоорганічна хімія
Оцінка антиоксидантної активності похідних з 6,7-дигідро-5H-імідазо[2,1-b][1,3]тіазиновим каркасом
1Сливка Н. Ю., 1, 2Голота С. М., 1Салієва Л. М., 1Кадикало Е. М., 2Колішецька М. А., 3Вовк М. В.
  1. Волинський національний університет імені Лесі Українки
    пр. Волі, 13, Луцьк, Україна, 43025
  2. Львівський національний медичний університет імені Данила Галицького
    вул. Пекарська, 69, Львів, Україна, 79010
  3. Інститут органічної хімії НАН України
    вул. Мурманська, 5, Київ, Україна, 02660

Abstract

Мета. Вивчення антиоксидантної (антирадикальної) активності похідних 6,7-дигідро-5Н-імідазо[2,1-b][1,3]тіазину. Методи. Дослідження in vitro антиоксидантної/антирадикальної активності з використанням методу інгібування радикалів 2,2-дифеніл-1-пікрилгідразилу (DPPH); визначення значень IC50. Результати. Проведено дослідження 29 модифікованих похідних 6,7-дигідро-5H-імідазо[2,1-b][1,3]тіазину на предмет їх здатності поглинати радикали DPPH в умовах, близьких до фізіологічних при концентрації 5 мМ, а також для найбільш перспективних сполук визначено значення IC50 методом серійних розведень. Проведено кореляції між структурою та антирадикальною активністю та обговорено можливі механізми дії. Висновки. Досліджені похідні 6,7-дигідро-5Н-імідазо[2,1-b][1,3]тіазину мають помірний рівень антирадикальної активності.
Keywords: 6,7-дигідро-5Н-імідазо[2,1-b][1,3]тіазини, антирадикальна активність, DPPH, IC50, залежність структура-активність

References

[1] Sies H, Jones DP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol. 2020; 21(7):363-83.
[2] Zarkovic N. Roles and functions of ROS and RNS in cellular physiology and pathology. Cells. 2020; 9(3):767.
[3] Cherkas A, Holota S, Mdzinarashvili T, Gabbianelli R, Zarkovic N. Glucose as a major antioxidant: when, what for and why it fails? Antioxidants (Basel). 2020; 9(2):140.
[4] Rossetti AC, Paladini MS, Riva MA, Molteni R. Oxidation-reduction mechanisms in psychiatric disorders: A novel target for pharmacological intervention. Pharmacol Ther. 2020; 210:107520.
[5] Cherkas A, Golota S, Guéraud F, Pichler Ch, Nersesyan A, Abrahamovych O, Krupak V, Bugiichyk V, Yatskevych O, Pliatsko M, Eckl P, Knasmüller S. A Helicobacter pylori-associated insulin resistance in asymptomatic sedentary young men does not correlate with inflammatory markers and urine levels of 8-iso-PGF2-α or 1,4-dihydroxynonane mercapturic acid. Arch Physiol Biochem. 2018; 124(3):275-85.
[6] Jaganjac M, Milkovic L, Gegotek A, Cindric M, Zarkovic K, Skrzydlewska E, Zarkovic N. The relevance of pathophysiological alterations in redox signaling of 4-hydroxynonenal for pharmacological therapies of major stress-associated diseases. Free Radic Biol Med. 2020; 157:128-53.
[7] Camara AK, Lesnefsky EJ, Stowe DF. Potential therapeutic benefits of strategies directed to mitochondria. Antioxid Redox Signal. 2010; 13(3):279-347.
[8] Kurutas EB. The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J. 2016; 15(1):71.
[9] Daiber A, Chlopicki S. Revisiting pharmacology of oxidative stress and endothelial dysfunction in cardiovascular disease: Evidence for redox-based therapies. Free Radic Biol Med. 2020; 157:15-37.
[10] Liu ZQ. Bridging free radical chemistry with drug discovery: A promising way for finding novel drugs efficiently. Eur J Med Chem. 2020; 189:112020.
[11] Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem. 2020; 204:112607.
[12] Zhang HY, Yang DP, Tang GY. Multipotent antioxidants: From screening to design. Drug Discov Today. 2006; 11(15-16):749-54.
[13] Ney Y, Nasim JM, Kharma A, Youssef LA, Jacob C. Small molecule catalysts with therapeutic potential. Molecules. 2018; 23(4):765.
[14] Bielitza M, Belorgey D, Ehrhardt K, Johann L, Lanfranchi DA, Gallo V, Schwarzer E, Mohring F, Jortzik E, Williams DL, Becker K, Arese P, Elhabiri M, Davioud-Charvet E. Antimalarial NADPH-consuming redox-cyclers as superior glucose-6-phosphate dehydrogenase deficiency copycats. Antioxid Redox Signal. 2015; 22(15):1337-51.
[15] Pappa A, Franco R, Schoneveld O, Galanis A, Sandaltzopoulos R, Panayiotidis MI. Sulfur-containing compounds in protecting against oxidant-mediated lung diseases. Curr Med Chem. 2007; 14(24):2590-6.
[16] Mukwevho E, Ferreira Z, Ayeleso A. Potential role of sulfur-containing antioxidant systems in highly oxidative environments. Molecules. 2014; 19(12):19376-89.
[17] Gaucher C, Boudier A, Bonetti J, Clarot I, Leroy P, Parent M. Glutathione: antioxidant properties dedicated to nanotechnologies. Antioxidants (Basel). 2018; 7(5):62.
[18] Sahiba N, Sethiya A, Soni J, Agarwal DK, Agarwal S. Saturated five-membered thiazolidines and their derivatives: from synthesis to biological applications. Top Curr Chem (Cham). 2020; 378(2):34.
[19] Farouk EM, Mohamed AB, Fawzi FM. An overview on synthetic 2-aminothiazole-based compounds associated with four biological activities. Molecules. 2021;26(5):1449.
[20] Saliyeva LM, Holota SM, Grozav AM, Yakovychuk ND, Lukashchuk MM, Marushko LP, Slyvka NY, Vovk MV. Synthesis, the antiexudative and antimicrobial activity of 6-arylidene substituted imidazo[2,1-b]thiazoles. J Org Pharm Chem. 2021;19(2):29-35.
[21] Saliyeva L, Slyvka N, Holota S, Grozav A, Yakovychuk N, Litvinchuk M, Vovk M. Synthesis and Evaluation of Bioactivity of 6-[(2-Pyridinyloxy)](benzo)imidazo[2,1-b][1,3]thiazine derivatives. Biointerface Res Appl Chem. 2022; 12(4):5031-44.
[22] Saliyeva L, Holota S, Grozav A, Yakovychuk N, Litvinchuk M, Slyvka N, Vovk M. Synthesis and evaluation of antimicrobial and anti-inflammatory activity of 6-aryliden-2-methyl-2,3-dihydroimidazo[2,1-b][1,3]thiazoles. Biointerface Res Appl Chem. 2022; 12(1):292-303.
[23] Brand-Williams W, Cuvelier M, Berset C. Use of a free radical method to evaluate antioxidant activity. LWT - Food Sci Technol. 1995; 28(1):25-30.