Biopolym. Cell. 2021; 37(5):335-345.
Структура та функції біополімерів
Характеристика регенерованого кератину та плівки на його основі
- Національний університет «Львівська політехніка»
12, вул Степана Бандери, Львів, Україна, 79013 - Інститут біології тварин НААН
вул. Стуса, 38, Львів, Україна, 79034
Abstract
Мета. Дослідити характеристики регенерованого кератину, одержаного з волосся людини, створення плівок на основі кератину та вивчення морфології їхньої поверхні й адсорбційної здатності. Методи. Кератини екстрагували сульфітолізом. Структуру регенерованого кератину досліджували методом ІЧ-спектроскопії, термогравіметрії та електрофорезу. Для формування плівок розчин кератину виливали на чашки Петрі. Їх біосумісність аналізували в адсорбційному тесті шляхом інкубації в сироватці крові людини. Для оцінки морфології поверхні плівок використали сканувальну електронну мікроскопію. Результати. Регенерований кератин представлений переважно протеїнами інтермедіальних філаментів і характеризується кращими термічними властивостями, ніж нативний. Плівки на основі кератину мали яскраво виражену рельєфну структуру. У адсорбційному тесті показано переважну здатність плівок адсорбувати на своїй поверхні альбумін із сироватки крові людини. Висновки. М’який режим екстракції кератинів методом сульфітолізу забезпечує збереження їхніх нативних властивостей та здатність плівок на основі кератину формувати зв’язки з протеїнами крові.
Keywords: іополімери, кератин, сульфітоліз, термогравіметричний аналіз, плівки, адсорбція
Повний текст: (PDF, англійською)
References
[1]
Gupta P, Nayak K. Characteristics of protein-based biopolymer and its application. Polym Eng Sci. 2015; 55(3): 485-98.
[2]
Yang Y, Chen J, Migliaresi C, Motta A. Natural fibrous protein for advanced tissue engineering applications: focusing on silk fibroin and keratin. Adv Exp Med Biol. 2020; 1249:39-49.
[3]
Makar IA, Gavrylyak V, Sedilo G. Genetical and biochemical aspects of keratin synthesis by hair follicles. Cyt Genet. 2007; 41(1):75-9.
[4]
Hassan, Mohammad M, Christopher M. Carr. A review of the sustainable methods in imparting shrink resistance to wool fabrics. J Adv Res. 2019; 18:39-60.
[5]
Shuai W, Taraballi F, Lay P, Kee W. Human keratin hydrogels support fibroblast attachment and proliferation in vitro. Cell Tissue Res. 2012; 347:795-802.
[6]
Pace L, Plate J, Smith T, Van D. The effect of human hair keratin hydrogel on early cellular response to sciatic nerve injury in a rat model. Biomaterials. 2013; 34(24):5907-14.
[7]
Aluigi A, Vineis C, Varesano A, Mazzuchetti G, Ferrero F, Tonin C. Structure and properties of keratin/PEO blend nanofibres. Eur Polym J. 2008; 44(8):2465-75.
[8]
Passipieri J, Baker H, Siriwardane M, Ellenburg M, Vadhavkar M, Saul J, Tomblyn S, Burnett L, Christ G. Keratin hydrogel enhances in vivo skeletal muscle function in a rat model of volumetric muscle loss. Tissue Eng Part A. 2017; 23(11-12):556-71.
[9]
Borelli M, Joepen N, Reichl S, Finis D, Schoppe M, Geerling G, Schrader S. Keratin films for ocular surface reconstruction: Evaluation of biocompatibilityin an in-vivo model. Biomaterials. 2015; 42:112-120.
[10]
Bochynska-Czyz M, Redkiewicz P, Kozlowska H, Matalinska J, Konop M, Kosson P. Can keratin scaffolds be used for creating threedimensional cell cultures? Open Med. 2020; 15:249-53.
[11]
Cheng Z, Chen X, Zhai D, Gao F, Guo T, Li W, Wang B. Development of keratin nanoparticles for controlled gastric mucoadhesion and drug release. J Nanobiotechnol. 2018; 16(1):1-13.
[12]
Gao F, Li W, Deng J, Kan J, Guo T, Wang B, Hao S. Recombinant human hair keratin nanoparticles accelerate dermal wound healing. ACS Appl Mater Interfaces. 2019; 11(20):18681-90.
[13]
Sierpinski P, Garrett J, Ma J, Apel P, Klorig D, Smith T, Van Dyke M. The use of keratin biomaterials derived from human hair for the promotion of rapid regeneration of peripheral nerves. Biomaterials. 2008; 29(1):118-28.
[14]
Havryliak V, Mykhaliuk V, Petrina R, Fedorova O, Lubenets V, Novikov V. Adsorbents based on keratin for lead and cadmium removal. Curr Appl Sci Techno. 2020; 20(1):136-43.
[15]
Sadeghi S, Nourmohammadi J, Ghaee A, Soleimani N. Carboxymethyl cellulose-human hair keratin hydrogel with controlled clindamycin release as antibacterial wound dressing. Int J Biol Macromol. 2020; 147:1239-47.
[16]
Silva N, Vilela C, Marrucho I, Freire S, Neto C, Silvestre J. Protein-based materials: from sources to innovative sustainable materials for biomedical applications. J Mater Chem B. 2014; 2(24):3715-40.
[17]
Saha S, Arshad M, Zubair M, Ullah A. Keratin as a Biopolymer. In Keratin as a Protein Biopolymer Springer, Cham. 2019; 163-85.
[18]
Isarankura N, Ayutthaya SIN, Tanpichai S, Wootthikanokkhan J. Keratin extracted from chicken feather waste: extraction, preparation, and structural characterization of the keratin and keratin/biopolymer films and electrospuns. J Polym Environ. 2015; 23(4):506-16.
[19]
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dyebinding. Anal Biochem. 1976; 72:248-54.
[20]
Laemmli U. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970; 227(5259):680-5.
[21]
Rocha Plácido Moore G, Maria Martelli S, Gandolfo C, José do Amaral Sobral P, Borges Laurindo J. Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocoll. 2006; 20(7):975-82.
[22]
Shavandi A, Silva T, Bekhit A, Bekhit A. E. Keratin: dissolution, extraction and biomedical application. Biomater Sci. 2017; 5(9): 1699-735.
[23]
Roy K, Choi W, Yi W, Moon W, Lee R, Han K, Hasebe T. Hemocompatibility of surface-modified, silicon-incorporated, diamond-like carbon films. Acta Biomater. 2009; 5(1):249-56.
[24]
Rajabi M, Ali A, McConnell M, Cabral J. Keratinous materials: Structures and functions in biomedical applications. Mater Sci Eng: C. 2020; 110:110612.
[25]
Aziz M. E, Jaleeli K. A, Ahmad A. FTIR spectroscopic analysis of keratinized tissue-the Hair. Int J Sci Eng Technol. 2017; 6:105-7.
[26]
de Castro Lima C, Machado L, Velasco M, Du Rosario Matos J. DSC measurements in relation to hair studies. J Therm Anal Calorim. 2018; 132:1429-37.
[27]
Apostolidou C. Regenerated hoof keratin from 1-ethyl-3methylimidazolium acetate and insights into disulfide ionic liquid interactions from MD Simulation. Chemistry Open. 2020; 9:695-702.
[28]
McLellan J, Thornhill S, Shelton S, Kumar M. Keratin-based biofilms, hydrogels, and biofibers. Keratin as a Protein Biopolymer. Springer Series on Polymer and Composite Materials. Springer, Cham. 2019; 187-200.
[29]
Rahmati M, Mozafari M. Protein adsorption on polymers. Mater Today Commun. 2018; 17:527-540.
[30]
Vasilchina H, Popov C, Ulrich S, Ye J, Danneil F, Stüber M, Welle A. Wetting behaviour and protein adsorption tests on ultrananocrystalline diamond and amorphous hydrogenated carbon thin films. Nanostructured Materials for Advanced Technological Applications. NATO Science for Peace and Security. Series B: Physics and Biophysics, Dordrecht: Springer. 2009. 547.
[31]
Popov C, Vasilchina H, Kulisch W, Danneil F, Stüber M, Ulrich S, Welle A, Reithmaier JP. Wettability and protein adsorption on ultrananocrystalline diamond/amorphous carbon composite films. Diam Relat Mater. 2009; 18:895-8.