Biopolym. Cell. 2021; 37(4):289-302.
Молекулярна та клітинна біотехнології
Створення трансгенної качки (Anas Platyrhynchos) за використання бластодермальних клітин та методу CRISPR/CAS9
1, 2Коновал О., 3Король П., 4Костенко С., 1Табака П., 1Ліжі Л., 4Чепіга А., 4Дорошенко М., 3Сидоренко О., 3Джус П., 4Свириденко Н., 4Литвиненко Т., 1Бу Х., 5Хуанг Ц., 5Лі Л., 6Драгулян М., 4Костюк Є., 4Філіпова П.
  1. Інститут тваринництва та ветеринарних наук, Академія сільськогосподарських наук Чжецзяна
    198 Shiqiao Road, Ханчжоу, Чжецзян, Китай, 310021
  2. Українська лабораторія якості та безпеки сільськогосподарської продукції
    Національний університет біоресурсів і природокористування України
    вул. Машинобудівників, 7, Чабани, Київська область, Україна, 08162
  3. Інститут розведення і генетики тварин імені М.В. Зубеця НААН України,
    вул. Погребняка, 1, м. Чубинське, Київська обл., Україна, 083213
  4. Національний університет біоресурсів і природокористування України
    вул. Героїв Оборони, 15, Київ, Україна, 03041
  5. Zhuji Guowey Poultry Development Co, Ltd, Ltd.
    1, Gujing Road, Чжуджи, Чжэцзян, Китай, 311813
  6. Союз великої рогатої худоби землі Баден-Вюртемберг Генетика
    Hopfenweilerweg 20,88339 Bad Waldsee, Німеччина

Abstract

Мета. Розробка методики створення трансгенних химер качок за використання донорських бластодермальних клітин після трансфекції з плазмідною ДНК та ліпофектаміном. Методи. За використання бластодермальних клітин донорів після трансфекції з ДНК вектору з ліпофектаміном створені трансгенні химери качки. Для редагування цільової ділянки геному качки використали систему CRISPR/Cas9 з гомологічно направленою репарацією (HDR). В якості трансгена використали репортерний ген EGFP. Результати. З 200 яєць, в які були введені трансфіковані бластодермальні клітини, отримали 20 нащадків, у тому числі 8 самців і 12 самок. Таким чином, виживаність ембріонів склала 10 %. Серед виживших плідними виявилися 13/20 тварин G0 (65 %): 10/12 (83.3 %) самок та 3/8 (37.5 %) самців. Процедура отримання химер сильніше впливає на виживаність та плідність самців-химер. Від 13 з 20 птахів G0, отримали в цілому 197 нащадків (в т.ч. 117 (59.4 %) дочок і 80 (40.6 %) синів) з яких 59 були EGFP-позитивними (30.3 %), в тому числі 10 самців (16.9 %) і 49 самок (83.1 %). Висновки. Використана нами методика може бути успішно застосована у подальших дослідженнях та при створенні трансгенної качки.
Keywords: CRISPR/Cas9, EGFP, трансгенна качка, бластодермальні клітини, химера

References

[1] Lillico SG, McGrew MJ, Sherman A, Sang HM. Transgenic chickens as bioreactors for protein-based drugs. Drug Discov Today. 2005; 10(3): 191-6.
[2] Oishi I, Kim S, Yoshii K, Esteban CR, Izpisua Belmonte JC. Cre-LoxP-regulated expression of monoclonal antibodies driven by an ovalbumin promoter in primary oviduct cells. BMC Biotechnol. 2011; 11: 5.
[3] Woodcock ME, Idoko-Akoh A, McGrew MJ. Gene editing in birds takes flight. Mamm Genome. 2017; 28(7-8): 315-23.
[4] Kim GD, Lee JH, Song S, Kim SW, Han JS, Shin SP, Park BC, Park TS. Generation of myostatin-knockout chickens mediated by D10A-Cas9 nickase. FASEB J. 2020; 34(4): 5688-96.
[5] Lee J, Kim D, Lee K. Muscle Hyperplasia in Japanese Quail by Single Amino Acid Deletion in MSTN Propeptide. Int J Mol Sci. 2020; 21(4): 1504.
[6] Hamernik DL. Farm animals are important biomedical models. Anim Front. 2019; 9(3): 3-5.
[7] Devlin RH, Sakhrani D, Tymchuk WE, Rise ML, and Goh B. Domestication and growth hormone transgenesis cause similar changes in gene expression in coho salmon (Oncorhynchus kisutch). Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(9): 3047-52.
[8] Wheeler MB, Walters EM, Clark SG. Transgenic animals in biomedicine and agriculture: outlook for the future. Anim Reprod Sci. 2003; 79(3-4): 265-289.
[9] Clark D, Pazdernik N. Transgenic Animals. In: Biotechnology. 2nd ed. Elsevier: "Academic Cell", 2015; 850p.
[10] Lee J, Kim D, Lee K. Current Approaches and Applications in Avian Genome Editing. Int J Mol Sci. 2020; 21(11): 3937.
[11] Doran T, Challagulla A, Cooper C, Tizard M, Jenkins K. Genome editing in poultry-opportunities and impacts. Natl Inst. Biosci J. 2016; 1.
[12] Peñas E, di Lorenzo C, Uberti F, Restani P. Allergenic proteins in enology: a review on technological applications and safety aspects. Molecules. 2015; 20(7): 13144-64.
[13] Lillico SG, Sherman A, McGrew MJ, Robertson CD, Smith J, Haslam C, Barnard P, Radcliffe PA, Mitrophanous KA, Elliot EA, Sang HM. Oviduct-specific expression of two therapeutic proteins in transgenic hens. Proc Natl Acad Sci U S A. 2007; 104(6): 1771-6.
[14] Park TS, Lee HJ, Kim KH, Kim JS, Han JY. Targeted gene knockout in chickens mediated by TALENs. Proc Natl Acad Sci U S A. 2014; 111(35): 12716-21.
[15] Zhu L, van de Lavoir MC, Albanese J, Beenhouwer DO, Cardarelli PM, Cuison S, Deng DF, Deshpande S, Diamond JH, Green L, Halk EL, Heyer BS, Kay RM, Kerchner A, Leighton PA, Mather CM, Morrison SL, Nikolov ZL, Passmore DB, Pradas-Monne A, Preston BT, Rangan VS, Shi M, Srinivasan M, White SG, Winters-Digiacinto P, Wong S, Zhou W, Etches RJ. Production of human monoclonal antibody in eggs of chimeric chickens. Nat Biotechnol. 2005; 23(9): 1159-69.
[16] Korol P, Kostenko S, Konoval O, Lu L, Li L. Egg productivity of EGFP-transgenic ducks. Animal Sci Food Technol. 2019; 10(3): 20-6.
[17] Konoval O, Korol P, Tabaka P, Kostenko S, Lizhi L, Chepiha A, Doroshenko M, Drahulian M, Xingchen B, Xu-etao H, Liumeng L. Generation of transgenic ducks by CRISPR/Cas9-mediated gene insertion combined with the sperm-mediated gene transfer (SMGT). Biopolym Cell. 2019; 35(6): 427-36.
[18] Collares T, Campos VF, De Leon PM, Cavalcanti PV, Amaral MG, Dellagostin OA, Deschamps JC, Seixas FK. Transgene transmission in chickens by sperm-mediated gene transfer after seminal plasma removal and exogenous DNA treated with dimethylsulfoxide or N,N-dimethylacetamide. J Biosci. 2011; 36(4): 613-20.
[19] Jordan BJ, Vogel S, Stark MR, Beckstead RB. Expression of green fluorescent protein in the chicken using in vivo transfection of the piggyBac transposon. J Biotechnol. 2014; 173: 86-9.
[20] Kwon MS, Koo BC, Kim D, Nam YH, Cui XS, Kim NH, Kim T. Generation of transgenic chickens expressing the human erythropoietin (hEPO) gene in an oviduct-specific manner: Production of transgenic chicken eggs containing human erythropoietin in egg whites. PLoS One. 2018; 13(5): e0194721.
[21] Scott BB, Lois C. Generation of tissue-specific transgenic birds with lentiviral vectors. Proc Natl Acad Sci U S A. 2005; 102(45): 16443-7.
[22] Park TS, Han JY. piggyBac transposition into primordial germ cells is an efficient tool for transgenesis in chickens. Proc Natl Acad Sci U S A. 2012; 109(24): 9337-41.
[23] Lee HJ, Yoon JW, Jung KM, Kim YM, Park JS, Lee KY, Park KJ, Hwang YS, Park YH, Rengaraj D, Han JY. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development. FASEB J. 2019; 33(7): 8519-29.
[24] Oishi I, Yoshii K, Miyahara D, Tagami T. Efficient production of human interferon beta in the white of eggs from ovalbumin gene-targeted hens. Sci Rep. 2018; 8(1): 10203.
[25] Eyal-Giladi H, Kochav S. From cleavage to primitive streak formation: a complementary normal table and a new look at the first stages of the development of the chick. I. General morphology. Dev Biol. 1976; 49(2): 321-337.
[26] Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. 1951. Dev Dyn. 1992; 195(4): 231-272.
[27] Bednarczyk M, Kozłowska I, Łakota P, Szczerba A, Stadnicka K, Kuwana T. Generation of transgenic chickens by the non-viral, cell-based method: effectiveness of some elements of this strategy. J Appl Genet. 2018; 59(1): 81-9.
[28] Carsience RS, Clark ME, Verrinder Gibbins AM, Etches RJ. Germline chimeric chickens from dispersed donor blastodermal cells and compromised recipient embryos. Development. 1993; 117(2): 669-75.
[29] Kagami H, Clark ME, Verrinder Gibbins AM, Etches RJ. Sexual differentiation of chimeric chickens containing ZZ and ZW cells in the germline. Mol Reprod Dev. 1995; 42(4): 379-87.
[30] Kino K, Pain B, Leibo SP, Cochran M, Clark ME, Etches RJ. Production of chicken chimeras from injection of frozen-thawed blastodermal cells. Poult Sci. 1997; 76(5): 753-60.
[31] Petitte JN, Clark ME, Liu G, Verrinder Gibbins AM, Etches RJ. Production of somatic and germline chimeras in the chicken by transfer of early blastodermal cells. Development. 1990; 108(1): 185-9.
[32] Nakamura Y, Kagami H, Tagami T. Development, differentiation and manipulation of chicken germ cells. Dev Growth Differ. 2013; 55(1): 20-40.
[33] Han JY, Lee HJ. Genome editing mediated by primordial germ cell in chicken. Methods Mol Biol. 2017; 1630: 153-63.
[34] Cong L, Ran FA, Cox D. Multiplex genome engineering using CRISPR/Cas systems. Science. 2013; 339: 819-23.
[35] Joung JK, Sander JD. TALENs: A widely applicable technology for targeted genome editing. Nat Rev Mol Cell Biol. 2013; 14: 49-55.
[36] Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD. Genome editing with engineered zinc finger nucleases. Nat Rev Genet. 2010; 11(9): 636-46.
[37] Gaj T, Gersbach CA, Barbas CF 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol. 2013; 31(7): 397-405.
[38] Walsh RM, Hochedlinger K. A variant CRISPR-Cas9 system adds versatility to genome engineering. Proc Natl Acad Sci U S A. 2013; 110(39): 15514-5.
[39] Wyman C, Kanaar R. DNA double-strand break repair: all's well that ends well. Annu Rev Genet. 2006; 40: 363-83.
[40] Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell. 2014; 157(6): 1262-78.
[41] van de Lavoir MC, Diamond JH, Leighton, PA, MatherLove C, Heyer BS, Bradshaw R, Kerchner A, Hooi LT, Gessaro TM, Swanberg SE, Delany ME, Etches RJ. Germline transmission of genetically modified primordial germ cells. Nature. 2006; 441(7094): 766-9.
[42] Shin SS, Kim TM, Kim SY, Kim TW, Seo HW, Lee SK, Kwon SC, Lee GS, Kim H, Lim JM, Han JY. Generation of transgenic quail through germ cell-mediated germline transmission. FASEB J. 2008; 22(7): 2435-44.
[43] Macdonald J, Taylor L, Sherman A, Kawakami K, Takahashi Y, Sang HM, McGrew MJ. Efficient genetic mod-ification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc Natl Acad Sci U S A. 2012; 109(23): E1466-E1472.
[44] Kaewmanee T, Benjakul S, Visessanguan W. Changes in chemical composition, physical properties and micro-structure of duck egg as influenced by salting. Food Chem. 2009; 112(3): 560-9.
[45] Carson S, Miller H, Witherow D. Characterization of Recombinant Clones. Molecular Biology Techniques. 2012: 67-76.
[46] Cormack BP, Valdivia RH, Falkow S. FACS-optimized mutants of the green fluorescent protein (GFP). Gene. 1996; 173(1): 33-8.
[47] Konoval O, Lu L, Tabaka P, Ren J, Bu X, Kostenko S, Du X, Chen L, Zhejiang Academy of Agricultural Sciences, Photoelectric method for sex detection of poultry, 2018,CN108575805B
[48] Tagirov MT. Poluchenie himer germinativnoj linii ptic. Biotechnologia Acta. 2010; 3(2): 82-8.
[49] Lucas A, Jamroz C. Atlas Of Avian Hematology. Washington D.C.: US Department of Agriculture; 1961; 271p.
[50] Reynaud G. Reproductive capacity and offspring of chickens submitted to a transfer of primordial germ cells during embryonic life. Wilehm Roux Arch Dev Biol. 1976; 179(2): 85-110.
[51] Watanabe M, Sugimori Y. Studies on the artificial insemination in ducks. Journal of the Faculty of Fisheries and Animal Husbandry. 1957; 3: 119-24.
[52] Li H, Song W, Shu J, Chen K, Zhu W, Han W, Xu W. Genetic diversity and population structure of 10 Chinese indigenous egg-type duck breeds assessed by microsatellite polymorphism. J Genet. 2010; 89(1): 65-72.
[53] Kostenko S, Konoval O, Chepiha A, Korol P, Doroshenko M, Lu L, Bu X, Huang L, Huang X, Li L. Genetic diversity and population structure of shaoxing and shanma ducks breeds by microsatellite loci. Scientific Bulletin of NULES of Ukraine. 2017; 271: 110-21.
[54] Sechman A, ŁAkota P, Wojtysiak D, Hrabia A, Mika M, Lisowski M, Bednarczyk M. Sex steroids level in blood plasma and ovarian follicles of the chimeric chicken. J Vet Med A Physiol Pathol Clin Med. 2006; 53(10): 501-8.
[55] Kamihira M, Ono K, Esaka K, Nishijima K, Kigaku R, Komatsu H, Yamashita T, Kyogoku K, Iijima S. High-level expression of single-chain Fv-Fc fusion protein in serum and egg white of genetically manipulated chickens by using a retroviral vector. J Virol. 2005; 79(17): 10864-74.
[56] Wang ZB, Du ZQ, Na W, Jing JH, Li YM, Leng L, Luan P, Wu CY, Zhang K, Wang YX, Liu WL, Yuan H, Liu ZH, Mu YS, Meng QW, Wang N, Yang CX, Li H. Production of transgenic broilers by non-viral vectors via optimizing egg windowing and screening transgenic roosters. Poult Sci. 2019; 98(1): 430-9.
[57] Penno CA, Kawabe Y, Ito A, Kamihira M. Production of recombinant human erythropoietin/Fc fusion protein by genetically manipulated chickens. Transgenic Res. 2010; 19(2): 187-195. doi:10.1007/s11248-009-9310-z.
[58] Korol P. Creation of transgenic, germinative chimeras of ducks using the CRISPR/Cas9 genome editing system (translated from Ukrainian). In: Aktualni Doslidzhennia Z Problem Rozvedennia, Henetyky Ta Biotekhnolohii U Tvarynnytstvi:Materialy XVIII Vseukrainskoi naukovoi konferentsii molodykh uchenykh i aspirantiv z mizhna-rodnoiu uchastiu, prysviachenoi 95-y richnytsi vid dnia narodzhennia profesora Volodymyra Yukhymovycha Nedavy. Chubynske: NAAN, In-t rozvedennia i henetyky tvaryn imeni M.V.Zubtsia ; za red. Yu. P. Polupana; 2020: 16-7.
[59] Korol P, Konoval O, Lu L, Bu X, Huang X, Li L. Creation of transgenic duck chimeras using the CRISPR/Cas9 genome editing system by the microinjection method (translated from Ukrainian). In: Aktualni Doslidzhennia Z Problem Rozvedennia, Henetyky Ta Biotekhnolohii U Tvarynnytstvi: Materialy XIX Vseukrainskoi Naukovoi Konferentsii Molodykh Uchenykh I Aspirantiv Z Mizhnarodnoiu Uchastiu. Chubynske: NAAN, In-t rozvedennia i henetyky tvaryn imeni M.V.Zubtsia; za red. Yu. P. Polupana; 2021: 8-9.