Biopolym. Cell. 2020; 36(5):358-370.
Біоорганічна хімія
Флуоресцентні кон’югати D-глюкозаміну з 3-тіазолілкумаринами: синтез, характеризація та потенційне застосування як реагентів для візуалізації клітин
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03143
Abstract
Мета. Синтез і вивчення кон’югатів глюкозамін-кумарин як можливих реагентів для флуоресцентної візуалізації клітин. Методи. Органічний синтез, ЯМР, оптична спектроскопія, конфокальна мікроскопія. Результати. Кон’югати D-глюкозаміну з 7-заміщеними 3-тіазолілкумаринами отриміано з виходами 55-82% реакцією NHS-активованих естерів карбокси-модифікованих барвників з аміногрупою цукру. За допомогою ЯМР визначено аномерну конфігурацію продуктів. Досліджено їхні спектрільні властивості в метанолі й фосфатному буфері. Попередньо оцінено можливість використання кон’югатів для фарбування клітин. Висновки. Тіазолілкумарин-мічені глюкозаміни з яскравою блакитною емісією – перспективні реагенти для візуалізації клітин.
Keywords: кумарини, глюкозамін, кон’югати, флуоресценція, конфокальна мікроскопія
Повний текст: (PDF, англійською)
References
[1]
Tuomi T, Santoro N, Caprio S, Cai M, Weng J, Groop L. The many faces of diabetes: a disease with increasing heterogeneity. Lancet. 2014;383(9922):1084-94.
[2]
Hay N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat Rev Cancer. 2016;16(10):635-49.
[3]
Łojko D, Owecki M, Suwalska A. Impaired Glucose Metabolism in Bipolar Patients: The Role of Psychiatrists in Its Detection and Management. Int J Environ Res Public Health. 2019;16(7):1132.
[4]
Vallabhajosula S, Solnes L, Vallabhajosula B. A broad overview of positron emission tomography radiopharmaceuticals and clinical applications: what is new? Semin Nucl Med. 2011;41(4):246-64.
[6]
Hu F, Chen Z, Zhang L, Shen Y, Wei L, Min W. Vibrational Imaging of Glucose Uptake Activity in Live Cells and Tissues by Stimulated Raman Scattering. Angew Chem Int Ed Engl. 2015;54(34):9821-5.
[7]
Maric T, Mikhaylov G, Khodakivskyi P, Bazhin A, Sinisi R, Bonhoure N, Yevtodiyenko A, Jones A, Muhunthan V, Abdelhady G, Shackelford D, Goun E. Bioluminescent-based imaging and quantification of glucose uptake in vivo. Nat Methods. 2019;16(6):526-532.
[8]
Terai T, Nagano T. Small-molecule fluorophores and fluorescent probes for bioimaging. Pflugers Arch. 2013;465(3):347-59.
[9]
Jun JV, Chenoweth DM, Petersson EJ. Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem. 2020;18(30):5747-5763.
[10]
Thomas B, Yan KC, Hu XL, Donnier-Maréchal M, Chen GR, He XP, Vidal S. Fluorescent glycoconjugates and their applications. Chem Soc Rev. 2020;49(2):593-641.
[11]
Speizer L, Haugland R, Kutchai H. Asymmetric transport of a fluorescent glucose analogue by human erythrocytes. Biochim Biophys Acta. 1985;815(1):75-84.
[12]
Yoshioka K, Takahashi H, Homma T, Saito M, Oh KB, Nemoto Y, Matsuoka H. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta. 1996;1289(1):5-9.
[13]
Yamada K, Saito M, Matsuoka H, Inagaki N. A real-time method of imaging glucose uptake in single, living mammalian cells. Nat Protoc. 2007;2(3):753-62.
[14]
Jung DW, Ha HH, Zheng X, Chang YT, Williams DR. Novel use of fluorescent glucose analogues to identify a new class of triazine-based insulin mimetics possessing useful secondary effects. Mol Biosyst. 2011;7(2):346-58.
[15]
Jo A, Park J, Park SB. Exploiting the mechanism of cellular glucose uptake to develop an image-based high-throughput screening system in living cells. Chem Commun (Camb). 2013;49(45):5138-40.
[16]
Schmidl S, Iancu CV, Choe JY, Oreb M. Ligand Screening Systems for Human Glucose Transporters as Tools in Drug Discovery. Front Chem. 2018;6:183.
[17]
Cheng Y , Shabir G , Li X , Fang L , Xu L , Zhang H , Li E . Development of a deep-red fluorescent glucose-conjugated bioprobe for in vivo tumor targeting. Chem Commun (Camb). 2020;56(7):1070-3.
[18]
Chen S, Fang Y, Zhu Q, Zhang W, Zhang X, Lu W. NIR fluorescent DCPO glucose analogues and their application in cancer cell imaging. RSC Adv. 2016; 6(85): 81894-901.
[19]
Agrawalla BK, Lee HW, Phue WH, Raju A, Kim JJ, Kim HM, Kang NY, Chang YT. Two-Photon Dye Cocktail for Dual-Color 3D Imaging of Pancreatic Beta and Alpha Cells in Live Islets. J Am Chem Soc. 2017;139(9):3480-3487.
[20]
Zhang M, Zhang Z, Blessington D, Li H, Busch TM, Madrak V, Miles J, Chance B, Glickson JD, Zheng G. Pyropheophorbide 2-deoxyglucosamide: a new photosensitizer targeting glucose transporters. Bioconjug Chem. 2003;14(4):709-14.
[21]
Cheng Z, Levi J, Xiong Z, Gheysens O, Keren S, Chen X, Gambhir SS. Near-infrared fluorescent deoxyglucose analogue for tumor optical imaging in cell culture and living mice. Bioconjug Chem. 2006;17(3):662-9.
[22]
Ye Y, Bloch S, Kao J, Achilefu S. Multivalent carbocyanine molecular probes: synthesis and applications. Bioconjug Chem. 2005;16(1):51-61.
[23]
Law WH, Lee LC, Louie MW, Liu HW, Ang TW, Lo KK. Phosphorescent cellular probes and uptake indicators derived from cyclometalated iridium(III) bipyridine complexes appended with a glucose or galactose entity. Inorg Chem. 2013;52(22):13029-41.
[24]
Yamada K, Onoe H, Teshima T, Yamamoto T. Method for imaging cell using fluorescence-labeled sugar derivative having coumarin derivative bound thereto, and imaging agent. Patent US10288604, May 14, 2019.
[25]
Wu Q, Cai M, Gao J, Zhao T, Xu H, Yan Q, Jing Y, Shi Y, Kang C, Liu Y, Liang F, Chen J, Wang H. Developing substrate-based small molecule fluorescent probes for super-resolution fluorescent imaging of various membrane transporters. Nanoscale Horiz. 2020;5(3):523-9.
[26]
Jo A, Sung J, Lee S, Nam H, Lee HW, Park J, Kim HM, Kim E, Park SB. Near-IR Fluorescent Tracer for Glucose-Uptake Monitoring in Live Cells. Bioconjug Chem. 2018;29(10):3394-3401.
[27]
Katritzky AR, Cusido J, Narindoshvili T. Monosaccharide-based water-soluble fluorescent tags. Bioconjug Chem. 2008;19(7):1471-5.
[28]
Hong JY, Price IR, Bai JJ, Lin H. A Glycoconjugated SIRT2 Inhibitor with Aqueous Solubility Allows Structure-Based Design of SIRT2 Inhibitors. ACS Chem Biol. 2019;14(8):1802-1810.
[29]
Cao J, Cui S, Li S, Du C, Tian J, Wan S, Qian Z, Gu Y, Chen WR, Wang G. Targeted cancer therapy with a 2-deoxyglucose-based adriamycin complex. Cancer Res. 2013;73(4):1362-73.
[30]
Augustin R. The protein family of glucose transport facilitators: It's not only about glucose after all. IUBMB Life. 2010;62(5):315-33.
[31]
Tanasova M, Fedie JR. Molecular Tools for Facilitative Carbohydrate Transporters (Gluts). Chembiochem. 2017;18(18):1774-1788.
[32]
Park J, Um JI, Jo A, Lee J, Jung DW, Williams DR, Park SB. Impact of molecular charge on GLUT-specific cellular uptake of glucose bioprobes and in vivo application of the glucose bioprobe, GB2-Cy3. Chem Commun (Camb). 2014;50(66):9251-4.
[33]
Kuziv IaB, Ishchenko VV, Khilya VP, Dubey IYa. Synthesis of reagents based on 7-substituted 3-thiazolylcoumarins for covalent labeling of oligonucleotides. Ukr Bioorg Acta. 2008; 6(1): 3-12.
[34]
Kuziv IaB, Ishchenko VV, Khilya VP, Dubey IYa. Synthesis of carboxyalkyl derivatives of 3-furylcoumarins for the fluorescent labeling of biomolecules. Ukr Bioorg Acta. 2009; 7(2): 47-54.
[35]
Kuziv I, Dubey L, Dubey I. Synthesis, spectral properties and evaluation of carboxy-functionalized 3-thiazolylcoumarins as blue-emitting fluorescent labeling reagents. Tetrahedron Lett. 2020; 61(35):152227.
[36]
Salgado LEV, Vargas-Hernández C. Spectrophotometric determination of the pKa, isosbestic point and equation of absorbance vs pH for a universal pH indicator. Am J Anal Chem. 2014; 5(17): 1290-301.
[37]
Kuziv IaB, Dubey IYa. Direct labeling of nucleosides with 3-thiazolylcoumarin fluorescent dyes. Biopolym Cell. 2020; 36(1): 36-47.
[38]
Bartnik M, Facey PC. Glycosides. In Badal McCreath S, Delgoda R. Eds. Pharmacognosy: Fundamentals, Applications and Strategy, Academic Press: London-San Diego, 2017:101-61.
[39]
Patra M, Awuah SG, Lippard SJ. Chemical Approach to Positional Isomers of Glucose-Platinum Conjugates Reveals Specific Cancer Targeting through Glucose-Transporter-Mediated Uptake in Vitro and in Vivo. J Am Chem Soc. 2016;138(38):12541-51.
[40]
Glenister A, Simone MI, Hambley TW. A Warburg effect targeting vector designed to increase the uptake of compounds by cancer cells demonstrates glucose and hypoxia dependent uptake. PLoS One. 2019;14(7):e0217712.
[41]
Liu FC, Su CR, Wu TY, Su SG, Yang HL, Lin JH, Wu TS. Efficient H-NMR quantitation and investigation of N-acetyl-d-glucosamine (GlcNAc) and N,N'-diacetylchitobiose (GlcNAc)(2) from chitin. Int J Mol Sci. 2011;12(9):5828-43.
[42]
Breitmaier E. Structure elucidation by NMR in organic chemistry: a practical guide, 3rd Ed., John Wiley & Sons, Chichester, UK, 2002:11-68.
[43]
Fink DW, Koehler WR. pH effects on fluorescence of umbelliferone. Anal Chem. 1970; 42(9): 990-3.
[44]
Wolfbeis OS. pH-dependent fluorescence spectra of 3-substituted umbelliferones. Zeitschrift für Naturforsch A. 1977; 32(9): 1065-7.
[45]
De Silva N, Minezawa N, Gordon MS. Excited-state hydrogen atom transfer reaction in solvated 7-hydroxy-4-methylcoumarin. J Phys Chem B. 2013;117(49):15386-94.
[46]
Hamilton KE, Rekman JF, Gunnink LK, Busscher BM, Scott JL, Tidball AM, Stehouwer NR, Johnecheck GN, Looyenga BD, Louters LL. Quercetin inhibits glucose transport by binding to an exofacial site on GLUT1. Biochimie. 2018;151:107-114.