Biopolym. Cell. 2020; 36(2):133-145.
Біоорганічна хімія
Синтез та оцінка біологічної активності роданін-піразолінових гібридних молекул
1Шепета Ю. Л., 2Лозинський А. В., 2Томків З. В., 3Грельє Ф., 2, 4Лесик Р. Б.
  1. Вінницький національний медичний університет ім. М. І. Пирогова
    вул. Пирогова, 56, Вінниця, Україна, 21018
  2. Львівський національний медичний університет імені Данила Галицького
    вул. Пекарська, 69, Львів, Україна, 79010
  3. Національний музей природи, UMR 7245 CNRS MCAM, Сорбонна університети
    CP 52, 57 вул. Кувье, Париж 75005, Франція
  4. Університет інформаційних технологій та менеджменту в Жешові
    вул. Сучарського, 2, Ржешув, Польща, 35-225

Abstract

Мета. На основі реакцій гетероциклізації та амінолізу здійснити синтез нових роданін-піразолінових гібридних молекул з фрагментом диклофенаку в положенні 3 для скринінгу їх протипухлинної та антитрипаносомної активності. Методи. Органічний синтез, спектроскопія ЯМР, фармакологічний скринінг. Результати. Взаємодією гідразиду 2-(2,6-дихлорофеніламіно)-фенілацетатної кислоти з тіокарбоніл-біс-тіогліколевою кислотою в середовищі етанолу синтезовано похідне роданіну з фрагментом протизапального засобу диклофенаку в положенні 3. Враховуючи наявність активної метиленової групи в положенні 5 проведено подальшу модифікацію з утворенням 5-етоксиметиленроданіну, який в умовах реакції амінолізу з різноманітними 3,5-діарил-4,5-дигідро-1Н-піразолами трансформований у серію відповідних 5-(3,5-диарил-4,5-дигідро-пі-ра-зол-1-ілметилен)-2-тіоксотіазолідин-4-онів. Скринінг протипухлинної активності дозволив ідентифікувати високоактивну сполуку 9 з середніми значеннями GI50 = 0.71/1.09 μM та TGI = 82.95/28.46 μM на 60 лініях ракових клітин (програма DTP NCI). Синтезовані піразолін-тіазолідинові гібридні молекули з фрагментом диклофенаку у структурі не проявили помітної антитрипаносомної активності відносно збудників Trypanosoma brucei brucei (Tbb). Висновки. Синтезовані 5-(3,5-диарил-4,5-дигідро-піра-зол-1-ілметилен)-2-тіоксотіазолідин-4-они з фрагментом диклофенаку у структурі є перспективною молекулярною платформою для розробки нових високоактивних та малотоксичних сполук як потенційних лікарських засобів.
Keywords: синтез, 2-тіоксо-4-тіазолідинон, диклофенак, спектральні характеристики, протипухлинна активність, антитрипаносомна активність

References

[1] Mendgen T, Steuer C, Klein CD. Privileged scaffolds or promiscuous binders: a comparative study on rhodanines and related heterocycles in medicinal chemistry. J Med Chem. 2012; 55(2):743-53.
[2] Tomasic T, Masic LP. Rhodanine as a privileged scaffold in drug discovery. Curr Med Chem. 2009; 16(13):1596-629.
[3] Chen H, Fan YH, Natarajan A, Guo Y, Iyasere J, Harbinski F, Luus L, Christ W, Aktas H, Halperin JA. Synthesis and biological evaluation of thiazolidine-2,4-dione and 2,4-thione derivatives as inhibitors of translation initiation. Bioorg Med Chem Lett. 2004; 14(21):5401-5.
[4] Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, Smith P, Scopes DI, Haydon D, Vousden K, Stubberfield CR, Young K. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett. 2004; 14(15):3975-8.
[5] Sing WT, Lee CL, Yeo SL, Lim SP, Sim MM. Arylalkylidene rhodanine with bulky and hydrophobic functional group as selective HCV NS3 protease inhibitor. Bioorg Med Chem Lett. 2001; 11(2):91-4.
[6] Sim MM, Ng SB, Buss AD, Crasta SC, Goh KL, Lee SK. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase. Bioorg Med Chem Lett. 2002; 12(4):697-9.
[7] Kumar G, Parasuraman P, Sharma SK, Banerjee T, Karmodiya K, Surolia N, Surolia A. Discovery of a rhodanine class of compounds as inhibitors of Plasmodium falciparum enoyl-acyl carrier protein reductase. J Med Chem. 2007; 50(11):2665-75.
[8] Ilkiv I, Lesyk R, Sklyarov O. Evaluation of novel 4-thiazolidinone-based derivatives as possible cytoprotective agents against stress model in rats. J Appl Pharm Sci. 2017; 7:199-203.
[9] Sklyarova Y, Fomenko I, Lozynska I, Lozynskyi A, Lesyk R, Sklyarov A. Hydrogen sulfide releasing 2-mercaptoacrylic acid-based derivative possesses cytoprotective activity in a small intestine of rats with medication-induced enteropathy. Sci Pharm. 2017; 85(4):35.
[10] Tomašić T, Peterlin Mašič L. Rhodanine as a scaffold in drug discovery: a critical review of its biological activities and mechanisms of target modulation. Expert Opin Drug Discov. 2012; 7(7):549-60.
[11] Kaminskyy D, Kryshchyshyn A, Lesyk, R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov. 2017; 12(12):1233-52.
[12] Kryshchyshyn A, Roman O, Lozynskyi A, Lesyk R. Thiopyrano[2,3-d]Thiazoles as New Efficient Scaffolds in Medicinal Chemistry. Sci Pharm. 2018; 86(2):26.
[13] Sawaguchi Y, Yamazaki R, Nishiyama Y, Sasai T, Mae M, Abe A, Yaegashi T, Nishiyama H, Matsuzaki T. Rational Design of a Potent Pan-Pim Kinases Inhibitor with a Rhodanine-Benzoimidazole Structure. Anticancer Res. 2017; 37(8):4051-7.
[14] Vatolin S, Phillips JG, Jha BK, Govindgari S, Hu J, Grabowski D, Parker Y, Lindner DJ, Zhong F, Distelhorst CW, Smith MR. Novel protein disulfide isomerase inhibitor with anticancer activity in multiple myeloma. Cancer Res. 2016; 76(11):3340-50.
[15] Huang MJ, Cheng YC, Liu CR, Lin S, Liu HE. A small-molecule c-Myc inhibitor, 10058-F4, induces cell-cycle arrest, apoptosis, and myeloid differentiation of human acute myeloid leukemia. Exp Hematol. 2006; 34(11):1480-9.
[16] Degterev A, Lugovskoy A, Cardone M, Mulley B, Wagner G, Mitchison T, Yuan J. Identification of small-molecule inhibitors of interaction between the BH3 domain and Bcl-xl. Nat Cell Biol. 2001; 3(2):173-82.
[17] Cutshall NS, O'Day C, Prezhdo M. Rhodanine derivatives as inhibitors of JSP-1. Bioorg Med Chem Lett. 2005; 15(14):3374-9.
[18] Smith TK, Young BL, Denton H, Hughes DL, Wagner GK. First small molecular inhibitors of T. brucei doli-cholphosphate mannose synthase (DPMS), a validated drug target in African sleeping sickness. Bioorg Med Chem Lett. 2009; 19(6):1749-52.
[19] Havrylyuk D, Zimenkovsky B, Karpenko O, Grellier P, Lesyk R. Synthesis of pyrazoline-thiazolidinone hybrids with trypanocidal activity. Eur J Med Chem. 2014; 85:245-54.
[20] Pantziarka P, Sukhatme V, Bouche G, Meheus L, et al. Repurposing Drugs in Oncology (ReDO)-diclofenac as an anti-cancer agent. Ecancermedicalscience. 2016; 10:610.
[21] Tang YZ, Liu ZQ. Evaluation of the free‐radical‐scavenging activity of diclofenac acid on the free‐radical‐induced haemolysis of human erythrocytes. J Pharm Pharmacol. 2006; 58(5):625-31.
[22] Bastos IM, Motta FN, Charneau S, Santana JM, Dubost L, Augustyns K, Grellier P. Prolyl oligopeptidase of Trypanosoma brucei hydrolyzes native collagen, peptide hormones and is active in the plasma of infected mice. Microb Infect. 2010; 12(6):457-66.
[23] Lethu S, Bosc D, Mouray E, Grellier P, Dubois J. New protein farnesyltransferase inhibitors in the 3-arylthiophene 2-carboxylic acid series: diversification of the aryl moiety by solid-phase synthesis. J Enzyme Inhib Med. Chem. 2013; 28(1):163-71.
[24] Boyd MR, Paull KD. Some practical considerations and applications of the national cancer institute in vitro anticancer drug discovery screen. Drug Dev Res. 1995; 34(2):91-109.
[25] Shoemaker R. H. The NCI60 human tumor cell line anticancer drug screen. Natl Rev Cancer. 2006; 6:813-23.
[26] Monks A, Scudiero D, Skehan P, Shoemaker R, Paull K, Vistica D, Hose C, Langley J, Cronise P, Vaigro-Wolff A, Gray-Goodrich M. Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. J Natl Cancer Inst. 1991; 83(11):757-66.
[27] Shepeta YL, Lelyukh MI, Zimenkovsky BS, Nektegayev IO, Lesyk RB. Synthesis and anti-inflammatory activity evaluation of rhodanine derivatives with 2-(2,6-dichlorophenylamino)-phenylacetamide fragment in molecules. Pharm rev. 2018; 1:6-15.
[28] Havrylyuk D, Zimenkovsky B, Vasylenko O, Day CW, Smee DF, Grellier P, Lesyk R. Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. Eur J Med Chem. 2013; 66:228-37.