Biopolym. Cell. 2019; 35(5):371-380.
Біоорганічна хімія
Особливості антимікробної активності деяких 5-амінометилен-2-тіоксо-4-тіазолідинонів
- Львівський національний медичний університет імені Данила Галицького
вул. Пекарська, 69, Львів, Україна, 79010 - Східноєвропейський національний університет імені Лесі Українки
просп. Волі, 13, Луцьк, Україна, 43025 - Львівський медичний інститут
вул. В. Поліщука, 76, Львів, 79018 - Івано-Франківський національний медичний університет
вул. Галицька, 2, Івано-Франківськ, Україна, 76018 - Національна медична академія післядипломної освіти імені П. Л. Шупика
вул. Дорогожицька, 9, Київ, Україна, 04112 - Національний медичний університет імені О. О. Богомольця
13, бульв. Тараса Шевченка, Київ, Україна, 01601 - Університет інформаційних технологій та менеджменту в Жешові
вул. Сучарського, 2, Ржешув, Польща, 35-225
Abstract
Мета. Вивчення протимікробних властивостей єнамінових похідних 2-тіоксо-4-тіазолідинону з фрагментом L-β-феніл-α-аланіну в молекулі. Методи. Мікрометод дифузії в агар; мікрометод серійних розведень в агарі. Тест-об’єкти - клінічні ізоляти мікроорганізмів: метіцилінчутливий штам Staphylococcus aureus (MSSA), метіцилінрезистентний штам Staphylococcus aureus (MRSA), метіцилінрезистентний штам Staphylococcus haemolyticus (MRSH), Escherichia coli; Pseudomonas aeruginosa, ESβL+ Klebsiella pneumonie, Candida albicans, Candida tropicalis. Результати. Проведено скринінг протимікробної активності 13 нових похідних 2-тіоксо-4-тіазолідинону. Встановлено, що найбільш чутливим до досліджуваних виявився метіцилінрезистентний штам Staphylococcus aureus (MRSA). Ряд 2-тіоксо-4-тіазолідинонів проявляють синергізм при комбінованому застосуванні з амоксициліном по відношенню до штаму ESβL+ Klebsiella pneumonie. Детально проаналізовано взаємозв’язок “структура-протимікробна активність”. Висновки. Тестовані 5-R-амінометиленпохідні етилового естеру 2-(4-оксо-2-тіоксотіазолідин-3-іл)-3-фенілпропіонової кислоти проявляють помірну протимікробну активність по відношенню грам-позитивних та грам-негативних бактерій, а також грибів роду Candida. Протимікробна активність тестованих сполук залежить від структурних особливостей в єнамінового фрагменту.
Keywords: антибактеріальна, протигрибкова активність, 4-тіазолідинони, єнамінони
Повний текст: (PDF, англійською)
References
[1]
Jackson N, Czaplewski L, Piddock LJ. Discovery and development of new antibacterial drugs: learning from experience? J Antimicrob Chemother. 2018; 73(6):1452-9.
[2]
Travis A, Chernova O, Chernov V, Aminov R. Antimicrobial drug discovery: Lessons of history and future strategies. Expert Opin Drug Discov. 2018; 13(11):983-5.
[3]
Brown ED, Wright GD. Antibacterial drug discovery in the resistance era. Nature, 2016; 529(7586):336-43.
[4]
Lee AS, de Lencastre H, Garau J, Kluytmans J, Malhotra-Kumar S, Peschel A, Harbarth S. Methicillin-resistant Staphylococcus aureus. Nat Rev Dis Primers. 2018; 4:18033.
[5]
Tommasi R, Brown DG, Walkup GK, Manchester JI, Miller AA. ESKAPEing the labyrinth of antibacterial discovery. Nat Rev Drug Discov, 2015; 14(8):529-42.
[6]
Rondevaldova J, Hummelova J, Tauchen J, Kokoska L. In vitro antistaphylococcal synergistic effect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb Drug Resist. 2018; 24(1):24-9.
[7]
Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist. 2018; 11:835-47.
[8]
Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL. Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov, 2007; 6(1):29-40.
[9]
Zervosen A, Lu WP, Chen Zh, White RE, Demuth ThP, Fre're JM. Interactions between Penicillin-Binding Proteins (PBPs) and Two Novel Classes of PBP Inhibitors, Arylalkylidene Rhodanines and Arylalkylidene Iminothiazolidin-4-ones. Antimicrob Agents Chemother, 2004; 48(3):961-9.
[10]
Sim MM, Ng SB, Buss AD, Crasta ShC, Goh KL, Lee SK. Benzylidene rhodanines as novel inhibitors of UDP-N-acetylmuramate/L-alanine ligase. Bioorg Med Chem Lett, 2002; 12(4):697-9.
[11]
Orchard MG, Neuss JC, Galley CM, Carr A, Porter DW, Smith P, Scopes DI, Haydon D, Vousden K, Stubberfield CR, Young K, Page M. Rhodanine-3-acetic acid derivatives as inhibitors of fungal protein mannosyl transferase 1 (PMT1). Bioorg Med Chem Lett, 2004; 14(15):3975-8.
[12]
Grant EB, Guiadeen D, Baum EZ, Foleno BD, Jin H, Montenegro DA, Nelson EA, Bush K, Hlasta DJ. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitor. Bioorg Med Chem Lett, 2000; 10(19):2179-82.
[13]
Gualtieri M, Bastide L, Villain-Guillot P, Michaux-Charachon S, Latouche J, Leonetti JP. In vitro activity of a new antibacterial rhodanine derivative against Staphylococcus epidermidis biofilms. J Antimicrob Chemother, 2006; 58(4):778-83.
[14]
Konai MM, Ghosh C, Yarlagadda V, Samaddar S, Haldar J. Membrane active phenylalanine conjugated lipophilic norspermidine derivatives with selective antibacterial activity. J Med Chem. 2014; 57(22):9409-23.
[15]
Derkach GO, Golota SM, Zasidko VV, Soronovych II, Kutsyk RV, Lesyk RB. The synthesis and the study of antimicrobial properties of 5-R,R'-aminometylene derivatives of thiazolidine-2,4-dione and 4-thioxothiazolidine-2-one. Zh Org Farm Khim. 2016; 14(3):32-7.
[16]
Derkach GO, Golota SM, Trufin YaO, Roman OM, Sementsiv GM, Soronovych II, Kutsyk RV, Grellier P, Lesyk RB. Synthesis and biological activity of 5-aminomethylene-2-thioxothiazolidin-4-ones derivatives. Farm Oglyad. 2017; 2:5-11.
[17]
Golota S, Sydorenko I, Surma R, Karpenko O, Gzella A, Lesyk R. Facile one-pot synthesis of 5-aryl/heterylidene-2-(2-hydroxyethyl- and 3-hydroxypropylamino)-thiazol-4-ones via catalytic aminolysis. Synth Commun. 2017; 47(11):1071-6.
[18]
Holota S, Shylych Ya, Derkach H, Karpenko O, Gzella A, Lesyk R. Synthesis of 4-(2H-[1,2,4]-Triazol-5-ylsulfanyl)-1,2-dihydropyrazol-3-one via Ring-Switching Hydrazinolysis of 5-Ethoxymethylidenethiazolo[3,2-b][1,2,4]triazol-6-one. Molbank. 2018; 2018(4):M1022.
[19]
Holota S, Kryshchyshyn A, Derkach H, Trufin Y, Demchuk I, Gzella A, Grellier P, Lesyk R. Synthesis of 5-enamine-4-thiazolidinone derivatives with trypanocidal and anticancer activity. Bioorg Chem. 2019; 86:126-36.
[20]
Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov. 2017; 12(12):1233-52.
[21]
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem. 2017; 140: 542-94.
[22]
Thornsberry C, McDougal LK. Successful use of broth microdilution in susceptibility tests for methicillin-resistant (heteroresistant) staphylococci. J Clin Microbiol. 1983; 18(5):1084-91
[23]
Balouiri M, Sadik M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: A review. J Pharm Anal. 2016; 6(2):71-9.