Biopolym. Cell. 2019; 35(4):268-287.
Структура та функції біополімерів
Аналіз інтерактому eEF1Bγ в ядерній фракції клітин аденокарциноми легені людини A549
1Капустян Л. М., 1Лисецький І. Л., 1Бондарчук Т. В., 1Новосильна О. В., 1Негруцький Б. С.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03143

Abstract

Мета. Виявити нові функції фактора елонгації трансляції eEF1Bgamma (eEF1Bγ) в ядерній фракції клітин карциноми легені людини А549. Методи. Білки-партнери eEF1Bγ у ядерній фракції клітин аденокарциноми легені людини А549 були ідентифіковані за допомогою ко-іммунопреципітації із наступною рідинною хроматографією та тандемною мас-спектрометрією (LC-MS/MS). Білкові мережі, до яких входить локалізований у ядрі білок eEF1Bγ, визначали за допомогою програми Cytoscape 3.2.0 із плагіном MCODE. Додатковий аналіз партнерів ядерного eEF1Bγ проводили за допомогою бази даних Mapofthecell. Результати. Ідентифіковано 234 білки, що взаємодіють із eEF1Bγ в ядерній фракції клітин А549. Мережі білок-білкових взаємодій, до яких залучені ці білки, були проаналізовані за допомогою двох біоінформатичних підходів. Висновки. Висунуто передбачення, що сплайсинг пре-мРНК та регуляція стабільності мРНК можуть бути основними процесами, у яких бере участь ядерно локалізований eEF1Bγ. Під час карциногенезу частина молекул eEF1Bγ залишає локалізований у цитоплазмі комплекс eEF1B і переходить до ядра, де регулює кількість специфічних мРНК через контроль сплайсингу відповідних пре-мРНК та вплив на стабільність мРНК.
Keywords: eEF1Bγ, білок-білкові взаємодії, ядро, клітини А549

References

[1] Trosiuk TV, Shalak VF, Szczepanowski RH, Negrutskii BS, El'skaya A V. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Balpha. FEBS J. 2015; 283(3): 484-97.
[2] Novosylna O V, Timchenko AA, Tiktopulo EI, Serdyuk IN, Negrutskii BS, El'skaya A V. Characterization of physical properties of two isoforms of translation elongation factor 1A. Biopolym Cell. 2007; 23(5): 386-90.
[3] Timchenko AA, Novosylna O V, Prituzhalov EA, Kihara H, El'skaya A V, Negrutskii BS, Serdyuk IN. Different oligomeric properties and stability of highly homologous A1 and proto-oncogenic A2 variants of mammalian translation elongation factor eEF1. Biochemistry. 2013; 52(32): 5345-53.
[4] Negrutskii B, Vlasenko D, Mirande M, Futernyk P, El'skaya A. mRNA-Independent way to regulate translation elongation rate in eukaryotic cells. IUBMB Life. 2018; 70(3): 192-6.
[5] Janssen GM, Möller W. Kinetic studies on the role of elongation factors 1 beta and 1 gamma in protein synthesis. J Biol Chem. 1988;263(4):1773-8.
[6] Janssen GM, van Damme HT, Kriek J, Amons R, Möller W. The subunit structure of elongation factor 1 from Artemia. Why two alpha-chains in this complex? J Biol Chem. 1994;269(50):31410-7.
[7] Veremieva M, Khoruzhenko A, Zaicev S, Negrutskii B, El'skaya A. Unbalanced expression of the translation complex eEF1 subunits in human cardioesophageal carcinoma. Eur J Clin Invest. 2011; 41(3): 269-76.
[8] Veremieva M, Kapustian L, Khoruzhenko A, Zakharychev V, Negrutskii B, El'skaya A. Independent overexpression of the subunits of translation elongation factor complex eEF1H in human lung cancer. BMC Cancer. 2014; 14913.
[9] Nathanson L, Xia T, Deutscher MP. Nuclear protein synthesis: a re-evaluation. RNA 2003; 9(1): 9-13.
[10] Kapustian LM, Dadlez M, Negrutskii BS. Protein partners of the eEF1Bβ subunit of the translation elongation complex eEF1B in the nuclear fraction of human lung carcinoma cells. Biopolym Cell 2017; 33(4): 243-55.
[11] Kang D, Gho Y, Suh M, Kang C. Highly Sensitive and Fast Protein Detection with Coomassie Brilliant Blue in Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis. Commun to Ed Bull Korean Chem Soc 2002; 23(11): 1511-12.
[12] Kapustian LM, Dadlez M, Negrutskii BS. Non-canonical interactions of the β subunit of the translation elongation complex eEF1B and analysis of their possible functional role. Biopolym Cell 2016; 32(5): 347-58.
[13] Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504.
[14] Bader GD, Hogue CW. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003;4:2.
[15] Kapustian LM, Lysetsky IL, Bondarchuk T V. Mass-spectrometric and bioinformatic analysis of eEF1Bγ interactome in the cytoplasmic fraction of A549 cells. Biopolym Cell 2018; 34(4): 292-302.
[16] Pisani C, Onori A, Gabanella F, Delle Monache F, Borreca A, Ammassari-Teule M, Fanciulli M, Di Certo MG, Passananti C, Corbi N. eEF1Bgamma binds the Che-1 and TP53 gene promoters and their transcripts. J Exp Clin Cancer Res 2016; 35(1): 146.
[17] Itzhak DN, Tyanova S, Cox J, Borner GH. Global, quantitative and dynamic mapping of protein subcellular localization. Elife 2016; 5
[18] Ghanem LR, Kromer A, Silverman IM, Ji X, Gazzara M, Nguyen N, Aguilar G, Martinelli M, Barash Y, Liebhaber SA. Poly(C)-Binding Protein Pcbp2 Enables Differentiation of Definitive Erythropoiesis by Directing Functional Splicing of the Runx1 Transcript. Mol Cell Biol 2018; 38(16):e00175-18
[19] Chen C, Lei J, Zheng Q, Tan S, Ding K, Yu C. Poly(rC) binding protein 2 (PCBP2) promotes the viability of human gastric cancer cells by regulating CDK2. FEBS Open Bio 2018; 8(5): 764-73.
[20] Kim J-K, Kim I, Choi K, Choi J-H, Kim E, Lee H-Y, Park J, Kim Yoon S. Poly(rC) binding protein 2 acts as a negative regulator of IRES-mediated translation of Hr mRNA. Exp Mol Med 2018; 50(2): e441.
[21] Yanatori I, Richardson DR, Toyokuni S, Kishi F. The iron chaperone poly(rC)-binding protein 2 forms a metabolon with the heme oxygenase 1/cytochrome P450 reductase complex for heme catabolism and iron transfer. J Biol Chem 2017; 292(32): 13205-29.
[22] Ren C, Zhang J, Yan W, Zhang Y, Chen X. RNA-binding Protein PCBP2 Regulates p73 Expression and p73-dependent Antioxidant Defense. J Biol Chem 2016; 291(18): 9629-37.
[23] Mao X, Liu J, Chen C, Zhang W, Qian R, Chen X, Lu H, Ge J, Zhao C, Zhang D, Wang Y. PCBP2 Modulates Neural Apoptosis and Astrocyte Proliferation After Spinal Cord Injury. Neurochem Res 2016; 41(9): 2401-14.
[24] Qin Y, Xue B, Liu C, Wang X, Tian R, Xie Q, Guo M, Li G, Yang D, Zhu H. NLRX1 mediates MAVS degradation to attenuate hepatitis C virus-induced innate immune response through PCBP2. J Virol 2017; 91 (23):e01264-17
[25] Lee E-Y, Lee H-C, Kim H-K, Jang SY, Park S-J, Kim Y-H, Kim JH, Hwang J, Kim J-H, Kim T-H, Arif A, Kim S-Y, Choi Y-K, Lee C, Lee C-H, Jung JU, Fox PL, Kim S, Lee J-S, Kim MH. Infection-specific phosphorylation of glutamyl-prolyl tRNA synthetase induces antiviral immunity. Nat Immunol 2016; 17(11): 1252-62.
[26] Wan C, Gong C, Zhang H, Hua L, Li X, Chen X, Chen Y, Ding X, He S, Cao W, Wang Y, Fan S, Xiao Y, Zhou G, Shen A. beta2-adrenergic receptor signaling promotes pancreatic ductal adenocarcinoma (PDAC) progression through facilitating PCBP2-dependent c-myc expression. Cancer Lett 2016; 373(1): 67-76.
[27] Tang SL, Gao YL, Chen XB. MicroRNA-214 targets PCBP2 to suppress the proliferation and growth of glioma cells. Int J Clin Exp Pathol. 2015;8(10):12571-6.
[28] Zhang X, Hua L, Yan D, Zhao F, Liu J, Zhou H, Liu J, Wu M, Zhang C, Chen Y, Chen B, Hu B. Overexpression of PCBP2 contributes to poor prognosis and enhanced cell growth in human hepatocellular carcinoma. Oncol Rep 2016; 36(6): 3456-64.
[29] Asnani M, Pestova T V, Hellen CUT. PCBP2 enables the cadicivirus IRES to exploit the function of a conserved GRNA tetraloop to enhance ribosomal initiation complex formation. Nucleic Acids Res 2016; 44(20): 9902-17.
[30] Lopez-Manriquez E, Vashist S, Urena L, Goodfellow I, Chavez P, Mora-Heredia JE, Cancio-Lonches C, Garrido E, Gutierrez-Escolano AL. Norovirus genome circularization and efficient replication are facilitated by binding of PCBP2 and hnRNP A1. J Virol 2013; 87(21): 11371-87.
[31] Cummins TD, Wu KZL, Bozatzi P, Dingwell KS, Macartney TJ, Wood NT, Varghese J, Gourlay R, Campbell DG, Prescott A, Griffis E, Smith JC, Sapkota GP. PAWS1 controls cytoskeletal dynamics and cell migration through association with the SH3 adaptor CD2AP. J Cell Sci 2018; 131(1):jcs202390
[32] Edwards M, Zwolak A, Schafer DA, Sept D, Dominguez R, Cooper JA. Capping protein regulators fine-tune actin assembly dynamics. Nat Rev Mol Cell Biol 2014; 15(10): 677-89.
[33] Kwon S-H, Oh S, Nacke M, Mostov KE, Lipschutz JH. Adaptor protein CD2AP and L-type lectin LMAN2 regulate exosome cargo protein trafficking through the Golgi complex. J Biol Chem 2017; 292(40): 16523.
[34] Tsuji K, Paunescu TG, Suleiman H, Xie D, Mamuya FA, Miner JH, Lu HAJ. Re-characterization of the Glomerulopathy in CD2AP Deficient Mice by High-Resolution Helium Ion Scanning Microscopy. Sci Rep 2017; 7(1): 8321.
[35] Xia W, Mruk DD, Lee WM, Cheng CY. Differential interactions between transforming growth factor-beta3/TbetaR1, TAB1, and CD2AP disrupt blood-testis barrier and Sertoli-germ cell adhesion. J Biol Chem 2006; 281(24): 16799-813.
[36] Dubey H, Gulati K, Ray A. Recent studies on cellular and molecular mechanisms in Alzheimer's disease: focus on epigenetic factors and histone deacetylase. Rev Neurosci 2018; 29(3): 241-60.
[37] Ubelmann F, Burrinha T, Salavessa L, Gomes R, Ferreira C, Moreno N, Guimas Almeida C. Bin1 and CD2AP polarise the endocytic generation of beta-amyloid. EMBO Rep 2017; 18(1): 102-22.
[38] Mutso M, Morro AM, Smedberg C, Kasvandik S, Aquilimeba M, Teppor M, Tarve L, Lulla A, Lulla V, Saul S, Thaa B, McInerney GM, Merits A, Varjak M. Mutation of CD2AP and SH3KBP1 Binding Motif in Alphavirus nsP3 Hypervariable Domain Results in Attenuated Virus. Viruses 2018; 10(5):226
[39] Zhang H, Zhang C, Tang H, Gao S, Sun F, Yang Y, Zhou W, Hu Y, Ke C, Wu Y, Ding Z, Guo L, Pei R, Chen X, Sy M-S, Zhang B, Li C. CD2-Associated Protein Contributes to Hepatitis C, Virus Propagation and Steatosis by Disrupting Insulin Signaling. Hepatology 2018; 68(5): 1710-25.
[40] Rayman JB, Kandel ER. TIA-1 Is a Functional Prion-Like Protein. Cold Spring Harb Perspect Biol 2017; 9(5):a030718
[41] Zheng D, Wang R, Ding Q, Wang T, Xie B, Wei L, Zhong Z, Tian B. Cellular stress alters 3'UTR landscape through alternative polyadenylation and isoform-specific degradation. Nat Commun 2018; 9(1): 2268.
[42] Meyer C, Garzia A, Mazzola M, Gerstberger S, Molina H, Tuschl T. The TIA1 RNA-Binding Protein Family Regulates EIF2AK2-Mediated Stress Response and Cell Cycle Progression. Mol Cell 2018; 69(4): 622-635.e6.
[43] Rayman JB, Karl KA, Kandel ER. TIA-1 Self-Multimerization, Phase Separation, and Recruitment into Stress Granules Are Dynamically Regulated by Zn(2). Cell Rep 2018; 22(1): 59-71.
[44] Diaz-Munoz MD, Kiselev VY, Le Novere N, Curk T, Ule J, Turner M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat Commun 2017; 8(1): 530.
[45] Yang X, Wang M, Lin B, Yao D, Li J, Tang X, Li S, Liu Y, Xie R, Yu S. miR-487a promotes progression of gastric cancer by targeting TIA1. Biochimie 2018; 154119-26.
[46] Tak H, Kang H, Ji E, Hong Y, Kim W, Lee EK. Potential use of TIA-1, MFF, microRNA-200a-3p, and microRNA-27 as a novel marker for hepatocellular carcinoma. Biochem Biophys Res Commun 2018; 497(4): 1117-22.
[47] Liu Y, Liu R, Yang F, Cheng R, Chen X, Cui S, Gu Y, Sun W, You C, Liu Z, Sun F, Wang Y, Fu Z, Ye C, Zhang C, Li J, Chen X. miR-19a promotes colorectal cancer proliferation and migration by targeting TIA1. Mol Cancer 2017; 16(1): 53.
[48] Hamada J, Shoda K, Masuda K, Fujita Y, Naruto T, Kohmoto T, Miyakami Y, Watanabe M, Kudo Y, Fujiwara H, Ichikawa D, Otsuji E, Imoto I. Tumor-promoting function and prognostic significance of the RNA-binding protein T-cell intracellular antigen-1 in esophageal squamous cell carcinoma. Oncotarget 2016; 7(13): 17111-28.
[49] Jiang L, Ash PEA, Maziuk BF, Ballance HI, Boudeau S, Abdullatif A Al, Orlando M, Petrucelli L, Ikezu T, Wolozin B. TIA1 regulates the generation and response to toxic tau oligomers. Acta Neuropathol 2019; 137(2): 259-77.
[50] Apicco DJ, Ash PEA, Maziuk B, LeBlang C, Medalla M, Al Abdullatif A, Ferragud A, Botelho E, Ballance HI, Dhawan U, Boudeau S, Cruz AL, Kashy D, Wong A, Goldberg LR, Yazdani N, Zhang C, Ung CY, Tripodis Y, Kanaan NM, Ikezu T, Cottone P, Leszyk J, Li H, Luebke J, Bryant CD, Wolozin B. Reducing the RNA binding protein TIA1 protects against tau-mediated neurodegeneration in vivo. Nat Neurosci 2018; 21(1): 72-80.
[51] Zhao M, Kim JR, van Bruggen R, Park J. RNA-Binding Proteins in Amyotrophic Lateral Sclerosis. Mol Cells. 2018;41(9):818-29. Review.
[52] Brand P, Dyck PJB, Liu J, Berini S, Selcen D, Milone M. Distal myopathy with coexisting heterozygous TIA1 and MYH7 Variants. Neuromuscul Disord 2016; 26(8): 511-5.
[53] Sun Y, Dong L, Yu S, Wang X, Zheng H, Zhang P, Meng C, Zhan Y, Tan L, Song C, Qiu X, Wang G, Liao Y, Ding C. Newcastle disease virus induces stable formation of bona fide stress granules to facilitate viral replication through manipulating host protein translation. FASEB J Off Publ Fed Am Soc Exp Biol 2017; 31(4): 1337-53.
[54] Ma X, Wang H, Ji J, Xu W, Sun Y, Li W, Zhang X, Chen J, Xue L. Hippo signaling promotes JNK-dependent cell migration. Proc Natl Acad Sci U S A 2017; 114(8): 1934-9.
[55] Li F, Bullough KZ, Vashisht AA, Wohlschlegel JA, Philpott CC. Poly(rC)-Binding Protein 2 Regulates Hippo Signaling To Control Growth in Breast Epithelial Cells. Mol Cell Biol 2016; 36(16): 2121-31.
[56] Pabis M, Popowicz GM, Stehle R, Fernandez-Ramos D, Asami S, Warner L, Garcia-Maurino SM, Schlundt A, Martinez-Chantar ML, Diaz-Moreno I, Sattler M. HuR biological function involves RRM3-mediated dimerization and RNA binding by all three RRMs. Nucleic Acids Res 2019; 47(2): 1011-29.
[57] Zhou A, Shi G, Kang G-J, Xie A, Liu H, Jiang N, Liu M, Jeong E-M, Dudley SCJ. RNA Binding Protein, HuR, Regulates SCN5A Expression Through Stabilizing MEF2C transcription factor mRNA. J Am Heart Assoc 2018; 7(9)::e007802
[58] Zybura-Broda K, Wolder-Gontarek M, Ambrozek-Latecka M, Choros A, Bogusz A, Wilemska-Dziaduszycka J, Rylski M. HuR (Elavl1) and HuB (Elavl2) Stabilize Matrix Metalloproteinase-9 mRNA During Seizure-Induced Mmp-9 Expression in Neurons. Front Neurosci 2018; 12224.
[59] Zhang Z, Yao Z, Wang L, Ding H, Shao J, Chen A, Zhang F, Zheng S. Activation of ferritinophagy is required for the RNA-binding protein ELAVL1/HuR to regulate ferroptosis in hepatic stellate cells. Autophagy 2018; 14(12): 2083-103.
[60] Chand SN, Zarei M, Schiewer MJ, Kamath AR, Romeo C, Lal S, Cozzitorto JA, Nevler A, Scolaro L, Londin E, Jiang W, Meisner-Kober N, Pishvaian MJ, Knudsen KE, Yeo CJ, Pascal JM, Winter JM, Brody JR. Posttranscriptional Regulation of PARG mRNA by HuR Facilitates DNA Repair and Resistance to PARP Inhibitors. Cancer Res 2017; 77(18): 5011-25.
[61] Zhou A, Xie A, Kim TY, Liu H, Shi G, Kang G-J, Jiang N, Liu M, Jeong E-M, Choi B-R, Dudley SCJ. HuR-mediated SCN5A messenger RNA stability reduces arrhythmic risk in heart failure. Hear Rhythm 2018; 15(7): 1072-80.
[62] Tang H, Wang H, Cheng X, Fan X, Yang F, Zhang M, Chen Y, Tian Y, Liu C, Shao D, Jiang B, Dou Y, Cong Y, Xing J, Zhang X, Yi X, Songyang Z, Ma W, Zhao Y, Wang X, Ma J, Gorospe M, Ju Z, Wang W. HuR regulates telomerase activity through TERC methylation. Nat Commun 2018; 9(1): 2213.
[63] Chi MN, Auriol J, Jegou B, Kontoyiannis DL, Turner JMA, de Rooij DG, Morello D. The RNA-binding protein ELAVL1/HuR is essential for mouse spermatogenesis, acting both at meiotic and postmeiotic stages. Mol Biol Cell 2011; 22(16): 2875-85.
[64] Zarei M, Lal S, Vaziri-Gohar A, O'Hayer K, Gunda V, Singh PK, Brody JR, Winter JM. RNA-Binding Protein HuR Regulates Both Mutant and Wild-Type IDH1 in IDH1-Mutated Cancer. Mol Cancer Res 2019; 17(2): 508-20.
[65] Levidou G, Kotta-Loizou I, Tasoulas J, Papadopoulos T, Theocharis S. Clinical Significance and Biological Role of HuR in Head and Neck Carcinomas. Dis Markers 2018; 20184020937.
[66] Al-Haidari A, Algaber A, Madhi R, Syk I, Thorlacius H. MiR-155-5p controls colon cancer cell migration via post-transcriptional regulation of Human Antigen R (HuR). Cancer Lett 2018; 421145-51.
[67] Brody JR, Dixon DA. Complex HuR function in pancreatic cancer cells. Wiley Interdiscip Rev RNA 2018; 9(3): e1469.
[68] Liu G, Grant WM, Persky D, Latham VMJ, Singer RH, Condeelis J. Interactions of elongation factor 1alpha with F-actin and beta-actin mRNA: implications for anchoring mRNA in cell protrusions. Mol Biol Cell 2002; 13(2): 579-92.
[69] Lei W, Wang Z-L, Feng H-J, Lin X-D, Li C-Z, Fan D. Long non-coding RNA SNHG12promotes the proliferation and migration of glioma cells by binding to HuR. Int J Oncol 2018; 53(3): 1374-84.
[70] Lan Y, Xiao X, He Z, Luo Y, Wu C, Li L, Song X. Long noncoding RNA OCC-1 suppresses cell growth through destabilizing HuR protein in colorectal cancer. Nucleic Acids Res 2018; 46(11): 5809-21.
[71] Jehung JP, Kitamura T, Yanagawa-Matsuda A, Kuroshima T, Towfik A, Yasuda M, Sano H, Kitagawa Y, Minowa K, Shindoh M, Higashino F. Adenovirus infection induces HuR relocalization to facilitate virus replication. Biochem Biophys Res Commun 2018; 495(2): 1795-800.
[72] Marchese D, Botta-Orfila T, Cirillo D, Rodriguez JA, Livi CM, Fernandez-Santiago R, Ezquerra M, Marti MJ, Bechara E, Tartaglia GG. Discovering the 3' UTR-mediated regulation of alpha-synuclein. Nucleic Acids Res 2017; 45(22): 12888-903.
[73] Battaglia-Hsu S-F, Ghemrawi R, Coelho D, Dreumont N, Mosca P, Hergalant S, Gauchotte G, Sequeira JM, Ndiongue M, Houlgatte R, Alberto J-M, Umoret R, Robert A, Paoli J, Jung M, Quadros E V, Gueant J-L. Inherited disorders of cobalamin metabolism disrupt nucleocytoplasmic transport of mRNA through impaired methylation/phosphorylation of ELAVL1/HuR. Nucleic Acids Res 2018; 46(15): 7844-57.
[74] Yang C-K, Yen P. Differential translation of Dazap1 transcripts during spermatogenesis. PLoS One 2013; 8(4): e60873.
[75] Choudhury R, Roy SG, Tsai YS, Tripathy A, Graves LM, Wang Z. The splicing activator DAZAP1 integrates splicing control into MEK/Erk-regulated cell proliferation and migration. Nat Commun 2014; 53078.
[76] Sasaki K, Ono M, Takabe K, Suzuki A, Kurihara Y. Specific intron-dependent loading of DAZAP1 onto the cox6c transcript suppresses pre-mRNA splicing efficacy and induces cell growth retardation. Gene 2018; 6571-8.
[77] Smith RWP, Anderson RC, Smith JWS, Brook M, Richardson WA, Gray NK. DAZAP1, an RNA-binding protein required for development and spermatogenesis, can regulate mRNA translation. RNA 2011; 17(7): 1282-95.
[78] Bolger GB. The RNA-binding protein SERBP1 interacts selectively with the signaling protein RACK1. Cell Signal 2017; 35256-63.
[79] Chew TG, Peaston A, Lim AK, Lorthongpanich C, Knowles BB, Solter D. A tudor domain protein SPINDLIN1 interacts with the mRNA-binding protein SERBP1 and is involved in mouse oocyte meiotic resumption. PLoS One 2013; 8(7): e69764.
[80] Brown A, Baird MR, Yip MC, Murray J, Shao S. Structures of translationally inactive mammalian ribosomes. Elife 2018; 7:e40486
[81] Mondal S, Begum NA, Hu W, Honjo T. Functional requirements of AID's higher order structures and their interaction with RNA-binding proteins. Proc Natl Acad Sci U S A 2016; 113(11): E1545-54.
[82] Ahn J-W, Kim S, Na W, Baek S-J, Kim J-H, Min K, Yeom J, Kwak H, Jeong S, Lee C, Kim S-Y, Choi CY. SERBP1 affects homologous recombination-mediated DNA repair by regulation of CtIP translation during S phase. Nucleic Acids Res 2015; 43(13): 6321-33.
[83] Mari Y, West GM, Scharager-Tapia C, Pascal BD, Garcia-Ordonez RD, Griffin PR. SERBP1 Is a Component of the Liver Receptor Homologue-1 Transcriptional Complex. J Proteome Res 2015; 14(11): 4571-80.
[84] Lee Y-J, Wei H-M, Chen L-Y, Li C. Localization of SERBP1 in stress granules and nucleoli. FEBS J 2014; 281(1): 352-64.
[85] Lee Y-J, Hsieh W-Y, Chen L-Y, Li C. Protein arginine methylation of SERBP1 by protein arginine methyltransferase 1 affects cytoplasmic/nuclear distribution. J Cell Biochem 2012; 113(8): 2721-8.
[86] Guo K, Zheng S, Xu Y, Xu A, Chen B, Wen Y. Loss of miR-26a-5p promotes proliferation, migration, and invasion in prostate cancer through negatively regulating SERBP1. Tumour Biol 2016; 37(9): 12843-54.
[87] Amaya Ramirez CC, Hubbe P, Mandel N, Bethune J. 4EHP-independent repression of endogenous mRNAs by the RNA-binding protein GIGYF2. Nucleic Acids Res 2018; 46(11): 5792-808.
[88] Schopp IM, Amaya Ramirez CC, Debeljak J, Kreibich E, Skribbe M, Wild K, Bethune J. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat Commun 2017; 815690.
[89] Kim M, Semple I, Kim B, Kiers A, Nam S, Park H-W, Park H, Ro S-H, Kim J-S, Juhasz G, Lee JH. Drosophila Gyf/GRB10 interacting GYF protein is an autophagy regulator that controls neuron and muscle homeostasis. Autophagy 2015; 11(8): 1358-72.
[90] Higashi S, Iseki E, Minegishi M, Togo T, Kabuta T, Wada K. GIGYF2 is present in endosomal compartments in the mammalian brains and enhances IGF-1-induced ERK1/2 activation. J Neurochem 2010; 115(2): 423-37.
[91] Morita M, Ler LW, Fabian MR, Siddiqui N, Mullin M, Henderson VC, Alain T, Fonseca BD, Karashchuk G, Bennett CF, Kabuta T, Higashi S, Larsson O, Topisirovic I, Smith RJ, Gingras A-C, Sonenberg N. A novel 4EHP-GIGYF2 translational repressor complex is essential for mammalian development. Mol Cell Biol 2012; 32(17): 3585-93.
[92] Huo Z, Luo X, Zhan X, Chu Q, Xu Q, Yao J, Pang H. Genetic analysis of indel markers in three loci associated with Parkinson's disease. PLoS One 2017; 12(9): e0184269.
[93] Zhang Y, Sun Q-Y, Yu R-H, Guo J-F, Tang B-S, Yan X-X. The contribution of GIGYF2 to Parkinson's disease: a meta-analysis. Neurol Sci Off J Ital Neurol Soc Ital Soc Clin Neurophysiol 2015; 36(11): 2073-9.
[94] Guo H, Wang T, Wu H, Long M, Coe BP, Li H, Xun G, Ou J, Chen B, Duan G, Bai T, Zhao N, Shen Y, Li Y, Wang Y, Zhang Y, Baker C, Liu Y, Pang N, Huang L, Han L, Jia X, Liu C, Ni H, Yang X, Xia L, Chen J, Shen L, Li Y, Zhao R, Zhao W, Peng J, Pan Q, Long Z, Su W, Tan J, Du X, Ke X, Yao M, Hu Z, Zou X, Zhao J, Bernier RA, Eichler EE, Xia K. Inherited and multiple de novo mutations in autism/developmental delay risk genes suggest a multifactorial model. Mol Autism 2018; 964.
[95] Xie J, Wei Q, Deng H, Li G, Ma L, Zeng H. Negative regulation of Grb10 Interacting GYF Protein 2 on insulin-like growth factor-1 receptor signaling pathway caused diabetic mice cognitive impairment. PLoS One 2014; 9(9): e108559.
[96] Hsu PJ, Zhu Y, Ma H, Guo Y, Shi X, Liu Y, Qi M, Lu Z, Shi H, Wang J, Cheng Y, Luo G, Dai Q, Liu M, Guo X, Sha J, Shen B, He C. Ythdc2 is an N(6)-methyladenosine binding protein that regulates mammalian spermatogenesis. Cell Res 2017; 27(9): 1115-27.
[97] Kretschmer J, Rao H, Hackert P, Sloan KE, Hobartner C, Bohnsack MT. The m(6)A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5'-3' exoribonuclease XRN1. RNA 2018; 24(10): 1339-50.
[98] Jain D, Puno MR, Meydan C, Lailler N, Mason CE, Lima CD, Anderson K V, Keeney S. ketu mutant mice uncover an essential meiotic function for the ancient RNA helicase YTHDC2. Elife 2018; 7:e30919
[99] Wojtas MN, Pandey RR, Mendel M, Homolka D, Sachidanandam R, Pillai RS. Regulation of m(6)A Transcripts by the 3'-->5' RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol Cell 2017; 68(2): 374-387.e12.
[100] Tanabe A, Tanikawa K, Tsunetomi M, Takai K, Ikeda H, Konno J, Torigoe T, Maeda H, Kutomi G, Okita K, Mori M, Sahara H. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1alpha mRNA is translated. Cancer Lett 2016; 376(1): 34-42.
[101] Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell 2015; 161(6): 1388-99.
[102] Zhao BS, Wang X, Beadell A V, Lu Z, Shi H, Kuuspalu A, Ho RK, He C. m(6)A-dependent maternal mRNA clearance facilitates zebrafish maternal-to-zygotic transition. Nature 2017; 542(7642): 475-8.
[103] Ivanova I, Much C, Di Giacomo M, Azzi C, Morgan M, Moreira PN, Monahan J, Carrieri C, Enright AJ, O'Carroll D. The RNA m(6)A Reader YTHDF2 Is Essential for the Post-transcriptional Regulation of the Maternal Transcriptome and Oocyte Competence. Mol Cell 2017; 67(6): 1059-1067.e4.
[104] Cai M, Liu Q, Jiang Q, Wu R, Wang X, Wang Y. Loss of m(6) A on FAM134B promotes adipogenesis in porcine adipocytes through m(6) A-YTHDF2-dependent way. IUBMB Life 2019; 71(5): 580-6.
[105] Zhong X, Yu J, Frazier K, Weng X, Li Y, Cham CM, Dolan K, Zhu X, Hubert N, Tao Y, Lin F, Martinez-Guryn K, Huang Y, Wang T, Liu J, He C, Chang EB, Leone V. Circadian Clock Regulation of Hepatic Lipid Metabolism by Modulation of m(6)A mRNA Methylation. Cell Rep 2018; 25(7): 1816-1828.e4.
[106] Wu R, Liu Y, Yao Y, Zhao Y, Bi Z, Jiang Q, Liu Q, Cai M, Wang F, Wang Y, Wang X. FTO regulates adipogenesis by controlling cell cycle progression via m(6)A-YTHDF2 dependent mechanism. Biochim Biophys acta Mol cell Biol lipids 2018; 1863(10): 1323-30.
[107] Li Z, Qian P, Shao W, Shi H, He XC, Gogol M, Yu Z, Wang Y, Qi M, Zhu Y, Perry JM, Zhang K, Tao F, Zhou K, Hu D, Han Y, Zhao C, Alexander R, Xu H, Chen S, Peak A, Hall K, Peterson M, Perera A, Haug JS, Parmely T, Li H, Shen B, Zeitlinger J, He C, Li L. Suppression of m(6)A reader Ythdf2 promotes hematopoietic stem cell expansion. Cell Res 2018; 28(9): 904-17.
[108] Li M, Zhao X, Wang W, Shi H, Pan Q, Lu Z, Perez SP, Suganthan R, He C, Bjoras M, Klungland A. Ythdf2-mediated m(6)A mRNA clearance modulates neural development in mice. Genome Biol 2018; 19(1): 69.
[109] Yu J, Li Y, Wang T, Zhong X. Modification of N6-methyladenosine RNA methylation on heat shock protein expression. PLoS One 2018; 13(6): e0198604.
[110] Winkler R, Gillis E, Lasman L, Safra M, Geula S, Soyris C, Nachshon A, Tai-Schmiedel J, Friedman N, Le-Trilling VTK, Trilling M, Mandelboim M, Hanna JH, Schwartz S, Stern-Ginossar N. m(6)A modification controls the innate immune response to infection by targeting type I interferons. Nat Immunol 2019; 20(2): 173-82.
[111] Toro-Ascuy D, Rojas-Araya B, Valiente-Echeverria F, Soto-Rifo R. Interactions between the HIV-1 Unspliced mRNA and Host mRNA Decay Machineries. Viruses 2016; 8(11):320
[112] Tirumuru N, Zhao BS, Lu W, Lu Z, He C, Wu L. N(6)-methyladenosine of HIV-1 RNA regulates viral infection and HIV-1 Gag protein expression. Elife 2016; 5::e15528
[113] Tsai K, Courtney DG, Cullen BR. Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 2018; 14(2): e1006919.
[114] Zhong L, Liao D, Zhang M, Zeng C, Li X, Zhang R, Ma H, Kang T. YTHDF2 suppresses cell proliferation and growth via destabilizing the EGFR mRNA in hepatocellular carcinoma. Cancer Lett 2019; 442252-61.
[115] Li J, Meng S, Xu M, Wang S, He L, Xu X, Wang X, Xie L. Downregulation of N(6)-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N(6)-methyladenosine levels. Oncotarget 2018; 9(3): 3752-64.
[116] Shi Y, Di Giammartino DC, Taylor D, Sarkeshik A, Rice WJ, Yates JR 3rd, Frank J, Manley JL. Molecular architecture of the human pre-mRNA 3' processing complex. Mol Cell 2009; 33(3): 365-76.
[117] Al-Maghrebi M, Brule H, Padkina M, Allen C, Holmes WM, Zehner ZE. The 3' untranslated region of human vimentin mRNA interacts with protein complexes containing eEF-1gamma and HAX-1. Nucleic Acids Res 2002; 30(23): 5017-28.
[118] Pelaseyed T, Bretscher A. Regulation of actin-based apical structures on epithelial cells. J Cell Sci 2018; 131(20):jcs221853
[119] Batchelor CL, Woodward AM, Crouch DH. Nuclear ERM (ezrin, radixin, moesin) proteins: regulation by cell density and nuclear import. Exp Cell Res 2004; 296(2): 208-22.
[120] Statello L, Maugeri M, Garre E, Nawaz M, Wahlgren J, Papadimitriou A, Lundqvist C, Lindfors L, Collen A, Sunnerhagen P, Ragusa M, Purrello M, Di Pietro C, Tigue N, Valadi H. Identification of RNA-binding proteins in exosomes capable of interacting with different types of RNA: RBP-facilitated transport of RNAs into exosomes. PLoS One 2018; 13(4): e0195969.
[121] Serpinskaya AS, Tuphile K, Rabinow L, Gelfand VI. Protein kinase Darkener of apricot and its substrate EF1gamma regulate organelle transport along microtubules. J Cell Sci 2014; 127(Pt 1): 33-9.
[122] Esposito AM, Kinzy TG. The eukaryotic translation elongation Factor 1Bgamma has a non-guanine nucleotide exchange factor role in protein metabolism. J Biol Chem 2010; 285(49): 37995-8004.
[123] Kim S, Kellner J, Lee C-H, Coulombe PA. Interaction between the keratin cytoskeleton and eEF1Bgamma affects protein synthesis in epithelial cells. Nat Struct Mol Biol 2007; 14(10): 982-3.
[124] Cho D-I, Oak M-H, Yang H-J, Choi H-K, Janssen GMC, Kim K-M. Direct and biochemical interaction between dopamine D3 receptor and elongation factor-1Bbetagamma. Life Sci 2003; 73(23): 2991-3004.
[125] Chu H, Chen Y, Yuan Q, Hua Q, Zhang X, Wang M, Tong N, Zhang W, Chen J, Zhang Z. The HOTAIR, PRNCR1 and POLR2E polymorphisms are associated with cancer risk: a meta-analysis. Oncotarget 2017; 8(26): 43271-83.
[126] Spehalski E, Capper KM, Smith CJ, Morgan MJ, Dinkelmann M, Buis J, Sekiguchi JM, Ferguson DO. MRE11 Promotes Tumorigenesis by Facilitating Resistance to Oncogene-Induced Replication Stress. Cancer Res 2017; 77(19): 5327-38.
[127] Li N, Kong J, Lin Z, Yang Y, Jin T, Xu M, Sun J, Chen L. Ezrin promotes breast cancer progression by modulating AKT signals. Br J Cancer 2019; 120(7): 703-13.
[128] D'Arcy BM, Swingle MR, Papke CM, Abney KA, Bouska ES, Prakash A, Honkanen RE. The Antitumor Drug LB-100 Is a Catalytic Inhibitor of Protein Phosphatase 2A (PPP2CA) and 5 (PPP5C) Coordinating with the Active-Site Catalytic Metals in PPP5C. Mol Cancer Ther 2019; 18(3): 556-66.
[129] Gouble A, Grazide S, Meggetto F, Mercier P, Delsol G, Morello D. A new player in oncogenesis: AUF1/hnRNPD overexpression leads to tumorigenesis in transgenic mice. Cancer Res. 2002;62(5):1489-95.
[130] Li Y, Bakke J, Finkelstein D, Zeng H, Wu J, Chen T. HNRNPH1 is required for rhabdomyosarcoma cell growth and survival. Oncogenesis 2018; 7(1): 9.
[131] Shi J, Liu H, Yao F, Zhong C, Zhao H. Upregulation of mediator MED23 in non-small-cell lung cancer promotes the growth, migration, and metastasis of cancer cells. Tumour Biol 2014; 35(12): 12005-13.
[132] Chung FF-L, Tan PFTM, Raja VJ, Tan B-S, Lim K-H, Kam T-S, Hii L-W, Tan SH, See S-J, Tan Y-F, Wong L-Z, Yam WK, Mai CW, Bradshaw TD, Leong C-O. Jerantinine A induces tumor-specific cell death through modulation of splicing factor 3b subunit 1 (SF3B1). Sci Rep 2017; 742504.
[133] Hassan MK, Kumar D, Naik M, Dixit M. The expression profile and prognostic significance of eukaryotic translation elongation factors in different cancers. PLoS One 2018; 13(1): e0191377.
[134] Zhang Z, Pan L, Ding Y, Lv J, Zhou P, Fang Y, Liu X, Zhang Y, Wang Y. eEF1G interaction with foot-and-mouth disease virus nonstructural protein 2B: Identification by yeast two-hybrid system. Microb Pathog 2017; 112111-6.
[135] Sammaibashi S, Yamayoshi S, Kawaoka Y. Strain-Specific Contribution of Eukaryotic Elongation Factor 1 Gamma to the Translation of Influenza A Virus Proteins. Front Microbiol 2018; 91446.
[136] Sasvari Z, Izotova L, Kinzy TG, Nagy PD. Synergistic roles of eukaryotic translation elongation factors 1Bgamma and 1A in stimulation of tombusvirus minus-strand synthesis. PLoS Pathog 2011; 7(12): e1002438.