Biopolym. Cell. 2019; 35(4):249-267.
Огляди
Фотосенсибілізаторина основі наночастин з ефектом агрегаційно-індукованої емісії
- Вищий державний навчальний заклад України «Українска медична стоматологічна академія»
вул. Шевченко, 23, Полтава, Україна, 36024 - Полтавська державна аграрна академія
вул. Сковороди, 1/3, Полтава, Україна, 36000
Abstract
Фотодинамічна терапія (ФТД) – це метод лікування локалізованих видів раку, що заснований на фотохімічній реакції між активованою світлом молекулою або фотосенсибілізатором (ФС), світлом і молекулярним киснем. Вирішальне значення для забезпечення ефективності ФДТ має правильно обраний ФС. Незважаючи на численні дослідження в цьому напрямку, більшість відомих ФС мають ряд недоліків, такі як відсутність специфічності і агрегація в водних середовищах. Отже, пошук ідеального ФС – актуальне завдання для подальшого розвитку ФДТ. У цьому огляді представлено класифікацію і аналізуються основні особливості ФС різних поколінь, описано механізми їх дії. Обговорюються різні способи здійснення адресної доставки ФС до пухлинних клітин. Описано переваги наночастин ФС з ефектом агрегаційно-індукованої емісії (АІЕ) відносно вихідних фотосенсибілізаторів.Показана можливість використання таких світловипромінюючих структур для практичного застосування в фототерапії раку.
Keywords: фотодинамічна терапія, фотосенсибілізатор, агрегаційно-індукована емісія
Повний текст: (PDF, англійською)
References
[1]
Raab O. Über die Wirkung fluorescieren der Stoffe auf Infusorien. Ztg Biol. 1900; 39: 524-6.
[2]
Von Tappeiner H, Jesionek H. Therapeutische versuche mit fluoreszierenden stoffen. Munch Med Wochenschr. 1903; 47:2042–4.
[3]
Von Tappeiner HA, Jodlbauer A. Die SensibilisierendeWirkung Fluorescierender Substanzen: Gesammelte Untersuchungen Über die Photodynamische Erscheinung. Leipzig, Germany: F.C.W. Vogel, 1907:p 210.
[4]
Dougherty TJ, Grindey GB, Fiel R, Weishaupt KR, Boyle DG. Photoradiation therapy. II. Cure of animal tumors with hematoporphyrin and light. J Natl Cancer Inst. 1975;55(1):115-21.
[6]
Kennedy JC, Marcus SL, Pottier RH. Photodynamic therapy (PDT) and photodiagnosis (PD) using endogenous photosensitization induced by 5-aminolevulinic acid (ALA): mechanisms and clinical results. J Clin Laser Med Surg. 1996;14(5):289-304. Review.
[7]
Barashkov NN, Sakhno TV, Nurmukhametov RN, Khakhel' OA. Excimers of organic molecules. Russ Chem Rev. 1993; 62(6): 539-52.
[8]
Korotkova IV, Sakhno TV, Barashkov NN. A quantum-chemical study of the influence of changes in the geometry of nitrogen-containing heterocyclic compounds on their fluorescent characteristics. Russ J Phys Chem A. 1999; 73(1): 83-6.
[9]
Stennett EM, Ciuba MA, Levitus M. Photophysical processes in single molecule organic fluorescent probes. Chem Soc Rev. 2014;43(4):1057-75.
[10]
Plotnikov VG. Theoretical foundations of the classification of molecules by luminescence spectra. Russ Chem Rev. 1980; 49(2): 172-89.
[11]
Barashkov NN, Korotkova IV, Sakhno TV. Spectral manifestations of aggregates structure of heteroaromatic molecules at low temperatures. J Lumin. 2000; 87-89: 794-6.
[12]
Korotkova IV, Sakhno TV, Barashkov NN. Theoretical study of radiationless deactivation of a series of coumarin derivatives. Theor Exp Chem. 1997; 33(2): 90-4.
[13]
Grynyov BV, Sakhno TV, Senchishin VG. Optically transparent and fluorescent polymers. Kharkiv Institute of single crystals 2003; 575 p.
[14]
Muehlmann LA, Ma BC, Longo JP, Almeida Santos Mde F, Azevedo RB. Aluminum-phthalocyanine chloride associated to poly(methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy. Int J Nanomedicine. 2014;9:1199-213.
[15]
Foote CS. Definition of type I and type II photosensitized oxidation. Photochem Photobiol. 1991;54(5):659.
[16]
Hamblin MR, Newman EL. On the mechanism of the tumour-localising effect in photodynamic therapy. J Photochem Photobiol B. 1994;23(1):3-8. Review.
[17]
Hudson R, Boyle RW. Strategies for selective delivery of photodynamic sensitisers to biological targets. J Porphyr Phthalocyanines. 2004; 8(7): 954-75.
[18]
Minaev BF, Yashchuk LB. Possible electronic mechanisms of generation and quenching of luminescence of singlet oxygen in the course of photodynamic therapy: ab initio study. Biopolym Cell. 2006; 22(3): 231-5.
[19]
Bregnhøj M, Westberg M, Minaev BF, Ogilby PR. Singlet oxygen photophysics in liquid solvents: converging on a unified picture. Acc Chem Res. 2017;50(8):1920-1927.
[20]
Minaev BF. Electronic mechanisms of molecular oxygen activation. Russ Chem Rev. 2007;76(11): 988–1010.
[21]
Minaev B. Photochemistry and spectroscopy of singlet oxygen in solvents. Recent advances which support the old theory. Chem Chem Tech. 2016; 10(4S): 519-30
[22]
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J. 2016;473(4):347-64.
[23]
Triesscheijn M, Baas P, Schellens JH, Stewart FA. Photodynamic therapy in oncology. Oncologist. 2006;11(9):1034-44.
[24]
Allison RR, Downie GH, Cuenca R, Hu XH, Childs CJ, Sibata CH. Photosensitizers in clinical PDT. Photodiagnosis Photodyn Ther. 2004;1(1):27-42.
[25]
Allison RR, Moghissi K. Photodynamic therapy (PDT): PDT mechanisms. Clin Endosc. 2013;46(1):24-9.
[26]
van Straten D, Mashayekhi V, de Bruijn HS, Oliveira S, Robinson DJ. Oncologic Photodynamic therapy: basic principles, current clinical status and future directions. Cancers (Basel). 2017;9(2). pii: E19. .
[27]
Yi G, Hong SH, Son J, Yoo J, Park C, Choi Y, Koo H. Recent advances in nanoparticle carriers for photodynamic therapy. Quant Imaging Med Surg. 2018;8(4):433-443.
[28]
Lipson RL, Baldes EJ. The photodynamic properties of a particular hematoporphyrin derivative. Arch Dermatol. 1960;82:508-16.
[29]
Dougherty TJ, Kaufman JE, Goldfarb A, Weishaupt KR, Boyle D, Mittleman A. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 1978;38(8):2628-35.
[30]
Taratula O, Schumann C, Duong T, Taylor KL, Taratula O. Dendrimer-encapsulated naphthalocyanine as a single agent-based theranostic nanoplatform for near-infrared fluorescence imaging and combinatorial anticancer phototherapy. Nanoscale. 2015;7(9):3888-902.
[31]
Allémann E, Rousseau J, Brasseur N, Kudrevich SV, Lewis K, van Lier JE. Photodynamic therapy of tumours with hexadecafluoro zinc phthalocynine formulated in PEG-coated poly(lactic acid) nanoparticles. Int J Cancer. 1996;66(6):821-4.
[32]
Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283-318.
[33]
Kim H, Chung K, Lee S, Kim DH, Lee H. Near-infrared light-responsive nanomaterials for cancer theranostics. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(1):23-45.
[34]
Gamaleia NF, Shton IO. Gold mining for PDT: Great expectations from tiny nanoparticles. Photodiagnosis Photodyn Ther. 2015;12(2):221-31.
[35]
Hong SH, Kim H, Choi Y. Indocyanine green-loaded hollow mesoporous silica nanoparticles as an activatable theranostic agent. Nanotechnology. 2017;28(18):185102.
[36]
Chen B, Pogue BW, Hasan T. Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv. 2005;2(3):477-87.
[37]
Hadinoto K, Sundaresan A, Cheow WS. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur J Pharm Biopharm. 2013;85(3 Pt A):427-43. ttps://
[38]
Hong EJ, Choi DG, Shim MS. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm Sin B. 2016;6(4):297-307.
[39]
Son J, Yang SM, Yi G, Roh YJ, Park H, Park JM, Choi MG, Koo H. Folate-modified PLGA nanoparticles for tumor-targeted delivery of pheophorbide a in vivo. Biochem Biophys Res Commun. 2018;498(3):523-528.
[40]
Yoon HY, Koo H, Choi KY, Lee SJ, Kim K, Kwon IC, Leary JF, Park K, Yuk SH, Park JH, Choi K. Tumor-targeting hyaluronic acid nanoparticles for photodynamic imaging and therapy. Biomaterials. 2012;33(15):3980-9.
[41]
Mei J, Leung NL, Kwok RT, Lam JW, Tang BZ. Aggregation-Induced Emission: Together we shine, united we soar! Chem Rev. 2015;115(21):11718-940.
[42]
Granchak VM, Sakhno TV, Korotkova IV, Sakhno YuE, Kuchmy SYa. Aggregation-induced emission in organic nanoparticles: properties and applications: a review. Theoretical and Experimental Chemistry. 2018; 54(3): 147–77.
[43]
Hong SH, Kim H, Choi Y. Enhanced fluorescence imaging and photodynamic cancer therapy using hollow mesoporous nanocontainers. Chem Asian J. 2017;12(14):1700-1703.
[44]
Luo J, Xie Z, Lam JW, Cheng L, Chen H, Qiu C, Kwok HS, Zhan X, Liu Y, Zhu D, Tang BZ. Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chem Commun (Camb). 2001;(18):1740-1.
[45]
An BK, Kwon SK, Jung SD, Park SY. Enhanced emission and its switching in fluorescent organic nanoparticles. J Am Chem Soc. 2002;124(48):14410-5.
[46]
Qin W, Dan D, Liu J, Yuan W, Hu Y, Liu B, Tang BZ. Biocompatible nanoparticles with aggregation‐induced emission characteristics as far‐red/near‐infrared fluorescent bioprobes for in vitro and in vivo imaging applications. Adv Funct Mater. 2012; 22(4): 771–9.
[47]
Li K, Qin W, Ding D, Tomczak N, Geng J, Liu R, Liu J, Zhang X, Liu H, Liu B, Tang BZ. Photostable fluorescent organic dots with aggregation-induced emission (AIE dots) for noninvasive long-term cell tracing. Sci Rep. 2013;3:1150.
[48]
Ding D, Mao D, Li K, Wang X, Qin W, Liu R, Chiam DS, Tomczak N, Yang Z, Tang BZ, Kong D, Liu B. Precise and long-term tracking of adipose-derived stem cells and their regenerative capacity via superb bright and stable organic nanodots. ACS Nano. 2014;8(12):12620-31.
[49]
Yan L, Zhang Y, Xu B, Tian W. Fluorescent nanoparticles based on AIE fluorogens for bioimaging. Nanoscale. 2016;8(5):2471-87.
[50]
Liu J, Chen C, Ji S, Liu Q, Ding D, Zhao D, Liu B. Long wavelength excitable near-infrared fluorescent nanoparticles with aggregation-induced emission characteristics for image-guided tumor resection. Chem Sci. 2017;8(4):2782-2789.
[51]
Yuan Y, Feng G, Qin W, Tang BZ, Liu B. Targeted and image-guided photodynamic cancer therapy based on organic nanoparticles with aggregation-induced emission characteristics. Chem Commun (Camb). 2014;50(63):8757-60.
[52]
Li M, Gao Y, Yuan Y, Wu Y, Song Z, Tang BZ, Liu B, Zheng QC. One-step formulation of targeted aggregation-induced emission dots for image-guided photodynamic therapy of cholangiocarcinoma. ACS Nano. 2017;11(4):3922-3932. PubMed PMID: 28383899.
[53]
Feng G, Qin W, Hu Q, Tang BZ, Liu B. Cellular and mitochondrial dual-targeted organic dots with aggregation-induced emission characteristics for image-guided photodynamic therapy. Adv Healthc Mater. 2015;4(17):2667-76.
[54]
Jayaram DT, Ramos-Romero S, Shankar BH, Garrido C, Rubio N, Sanchez-Cid L, Gómez SB, Blanco J, Ramaiah D. In vitro and in vivo demonstration of photodynamic activity and cytoplasm imaging through tpe nanoparticles. ACS Chem Biol. 2016;11(1):104-12.
[55]
Perry SW, Norman JP, Barbieri J, Brown EB, Gelbard HA. Mitochondrial membrane potential probes and the proton gradient: a practical usage guide. Biotechniques. 2011;50(2):98-115.
[56]
Zhao N, Chen S, Hong Y, Tang BZ. A red emitting mitochondria-targeted AIE probe as an indicator for membrane potential and mouse sperm activity. Chem Commun (Camb). 2015;51(71):13599-602.
[57]
Gu B, Wu W, Xu G, Feng G, Yin F, Chong PHJ, Qu J, Yong KT, Liu B. Precise Two-photon photodynamic therapy using an efficient photosensitizer with aggregation-induced emission characteristics. Adv Mater. 2017;29(28).
[58]
Guan Y, Lu H, Li W, Zheng Y, Jiang Z, Zou J, Gao H. Near-infrared triggered upconversion polymeric nanoparticles based on aggregation-induced emission and mitochondria targeting for photodynamic cancer therapy. ACS Appl Mater Interfaces. 2017;9(32):26731-26739.
[59]
Zheng Y, Lu H, Jiang Z, Guan Y, Zou J, Wang X, Cheng R, Gao H. Low-power white light triggered AIE polymer nanoparticles with high ROS quantum yield for mitochondria-targeted and image-guided photodynamic therapy. J Mater Chem B. 2017; 5(31): 6277−81.
[60]
Decock J, Obermajer N, Vozelj S, Hendrickx W, Paridaens R, Kos J. Cathepsin B, cathepsin H, cathepsin X and cystatin C in sera of patients with early-stage and inflammatory breast cancer. Int J Biol Markers. 2008;23(3):161-8.
[61]
Yuan Y, Zhang CJ, Gao M, Zhang R, Tang BZ, Liu B. Specific light-up bioprobe with aggregation-induced emission and activatable photoactivity for the targeted and image-guided photodynamic ablation of cancer cells. Angew Chem Int Ed Engl. 2015;54(6):1780-6.
[62]
Han K, Wang SB, Lei Q, Zhu JY, Zhang XZ. Ratiometric Biosensor for Aggregation-induced emission-guided precise photodynamic therapy. ACS Nano. 2015;9(10):10268-77.
[63]
Sun X, Zebibula A, Dong X, Li G, Zhang G, Zhang D, Qian J, He S. Targeted and imaging-guided in vivo photodynamic therapy of tumors using dualfunctional, aggregation-induced emission nanoparticles. Nano Research. 2018; 11(5): 2756–70.
[64]
Ravotto L, Ceroni P. Aggregation-induced phosphorescence of metal complexes: from principles to applications. Coord Chem Rev. 2017; 346: 62-76.
[65]
Sathish V, Ramdass A, Thanasekaran P, Lu K-L. Aggregation-induced phosphorescence enhancement (AIPE) based on transition metal complexes—An overview. J. Photochem and Photobiology C: Photochemistry Reviews. 2015; 23: 25-44.
[66]
Alam P, Dash S, Climent C, Kaur G, Choudhury AR, Casanova D, Alemany P, Chowdhury R, Laskar IR. Aggregation-induced emission’ active iridium(III) complexes with applications in mitochondrial staining. RSC Adv. 2017; 7: 5642-8.
[67]
Liu Y, Song N, Chen L, Xie Z-G. BODIPY@Ir(III) complexes assembling organic nanoparticles for enhanced photodynamic therapy. Chin J Polymer Sci. 2018; 36(3): 417–424.