Biopolym. Cell. 2019; 35(2):81-90.
Структура та функції біополімерів
Скафолдні білки ITSN1 та ITSN2 взаємодіють із ядерними РНК-зв’язуючими білками
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03143
Abstract
Мета. Виявити нових партнерів ITSN1 і ITSN2 з-поміж РНК-зв'язуючих білків (RBP), що беруть участь в регуляції процесингу мРНК. Методи. Взаємодії були проаналізовано з використанням GST pull-down assay та імунопреципітації, тоді як біоінформатичний аналіз було використано для ідентифікації інших RBP, які могли б взаємодіяти із білками ITSN1 та ITSN2. Результати. Було показано, що SH3 домени білків ITSN1 та ITSN2 взаємодіють з ядерними RBP SAM68, WBP11 і LARP6. Крім того, було виявлено, що ITSN1 та ITSN2 копреципітувались із SAM68 і LARP6 із лізатів клітин лінії 293. Біоінформатичний аналіз показав, що існує більше 500 ядерних RBP, які містять кілька пролінових мотивів, що можуть взаємодіяти із SH3 доменами білків ITSN1/2. Висновки. SH3 домени білків ITSN1 і ITSN2 взаємодіють із ядерними RBP SAM68, LARP6 і WBP11 in vitro, утворюють комплекси із SAM68 і LARP6 в клітинах лінії 293 і потенційно можуть взаємодіяти з іншими ядерними RBP, що містять мотиви, які зв’язуються із SH3 доменами.
Keywords: ITSN1, ITSN2, РНК-зв'язуючі білки
Повний текст: (PDF, англійською)
References
[1]
Good MC, Zalatan JG, Lim WA. Scaffold proteins: hubs for controlling the flow of cellular information. Science. 2011;332(6030):680-6.
[2]
Tsyba L, Nikolaienko O, Dergai O, Dergai M, Novokhatska O, Skrypkina I, Rynditch A. Intersectin multidomain adaptor proteins: regulation of functional diversity. Gene. 2011;473(2):67-75.
[3]
Hussain NK, Jenna S, Glogauer M, Quinn CC, Wasiak S, Guipponi M, Antonarakis SE, Kay BK, Stossel TP, Lamarche-Vane N, McPherson PS. Endocytic protein intersectin-l regulates actin assembly via Cdc42 and N-WASP. Nat Cell Biol. 2001;3(10):927-32.
[4]
Herrero-Garcia E, O'Bryan JP. Intersectin scaffold proteins and their role in cell signaling and endocytosis. Biochim Biophys Acta Mol Cell Res. 2017;1864(1):23-30.
[5]
Wang JB, Wu WJ, Cerione RA. Cdc42 and Ras cooperate to mediate cellular transformation by intersectin-L. J Biol Chem. 2005;280(24):22883-91.
[6]
Gryaznova T, Kropyvko S, Burdyniuk M, Gubar O, Kryklyva V, Tsyba L, Rynditch A. Intersectin adaptor proteins are associated with actin-regulating protein WIP in invadopodia. Cell Signal. 2015;27(7):1499-508.
[7]
Russo A, O'Bryan JP. Intersectin 1 is required for neuroblastoma tumorigenesis. Oncogene. 2012;31(46):4828-34.
[8]
Harris J, Herrero-Garcia E, Russo A, Kajdacsy-Balla A, O'Bryan JP, Chiu B. Silencing Intersectin 1 Slows Orthotopic Neuroblastoma Growth in Mice. J Pediatr Hematol Oncol. 2017;39(8):e413-e418.
[9]
Gu F, Zhang H, Qin F, Liu X, Li W, Fu L, Ying G, Li B, Zhang M, Ma Y. Intersectin1-S, a multidomain adapter protein, is essential for malignant glioma proliferation. Glia. 2015;63(9):1595-605.
[10]
Ma Y, Wang B, Li W, Ying G, Fu L, Niu R, Gu F. Reduction of intersectin1-s induced apoptosis of human glioblastoma cells. Brain Res. 2010;1351:222-8.
[11]
Ma Y, Wang B, Li W, Liu X, Wang J, Ding T, Zhang J, Ying G, Fu L, Gu F. Intersectin1-s is involved in migration and invasion of human glioma cells. J Neurosci Res. 2011;89(7):1079-90.
[12]
Jeganathan N, Predescu D, Zhang J, Sha F, Bardita C, Patel M, Wood S, Borgia JA, Balk RA, Predescu S. Rac1-mediated cytoskeleton rearrangements induced by intersectin-1s deficiency promotes lung cancer cell proliferation, migration and metastasis. Mol Cancer. 2016;15(1):59.
[13]
Specht K, Harbeck N, Smida J, Annecke K, Reich U, Naehrig J, Langer R, Mages J, Busch R, Kruse E, Klein-Hitpass L, Schmitt M, Kiechle M, Hoefler H. Expression profiling identifies genes that predict recurrence of breast cancer after adjuvant CMF-based chemotherapy. Breast Cancer Res Treat. 2009;118(1):45-56.
[14]
Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J, Cohn MA, Cantley LC, Gygi SP. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci U S A. 2004;101(33):12130-5.
[15]
Alvisi G, Paolini L, Contarini A, Zambarda C, Di Antonio V, Colosini A, Mercandelli N, Timmoneri M, Palù G, Caimi L, Ricotta D, Radeghieri A. Intersectin goes nuclear: secret life of an endocytic protein. Biochem J. 2018;475(8):1455-1472.
[16]
Wong KA, Wilson J, Russo A, Wang L, Okur MN, Wang X, Martin NP, Scappini E, Carnegie GK, O'Bryan JP. Intersectin (ITSN) family of scaffolds function as molecular hubs in protein interaction networks. PLoS One. 2012;7(4):e36023.
[17]
Thalappilly S, Suliman M, Gayet O, Soubeyran P, Hermant A, Lecine P, Iovanna JL, Dusetti NJ. Identification of multi-SH3 domain-containing protein interactome in pancreatic cancer: a yeast two-hybrid approach. Proteomics. 2008;8(15):3071-81.
[18]
Asbach B, Ludwig C, Saksela K, Wagner R. Comprehensive analysis of interactions between the Src-associated protein in mitosis of 68 kDa and the human Src-homology 3 proteome. PLoS One. 2012;7(6):e38540.
[19]
Nikolaienko O, Skrypkina I, Tsyba L, Fedyshyn Y, Morderer D, Buchman V, de la Luna S, Drobot L, Rynditch A. Intersectin 1 forms a complex with adaptor protein Ruk/CIN85 in vivo independently of epidermal growth factor stimulation. Cell Signal. 2009;21(5):753-9.
[20]
Novokhatska O, Dergai M, Tsyba L, Skrypkina I, Filonenko V, Moreau J, Rynditch A. Adaptor proteins intersectin 1 and 2 bind similar proline-rich ligands but are differentially recognized by SH2 domain-containing proteins. PLoS One. 2013;8(7):e70546.
[21]
Venables JP, Dalgliesh C, Paronetto MP, Skitt L, Thornton JK, Saunders PT, Sette C, Jones KT, Elliott DJ. SIAH1 targets the alternative splicing factor T-STAR for degradation by the proteasome. Hum Mol Genet. 2004;13(14):1525-34.
[22]
Llorian M, Beullens M, Lesage B, Nicolaescu E, Beke L, Landuyt W, Ortiz JM, Bollen M. Nucleocytoplasmic shuttling of the splicing factor SIPP1. J Biol Chem. 2005;280(46):38862-9.
[23]
Shao R, Scully SJ Jr, Yan W, Bentley B, Mueller J, Brown C, Bigelow C, Schwartz LM. The novel lupus antigen related protein acheron enhances the development of human breast cancer. Int J Cancer. 2012;130(3):544-54.
[24]
Giudice G, Sánchez-Cabo F, Torroja C, Lara-Pezzi E. ATtRACT-a database of RNA-binding proteins and associated motifs. Database (Oxford). 2016;2016. pii: baw035.
[25]
Cook KB, Kazan H, Zuberi K, Morris Q, Hughes TR. RBPDB: a database of RNA-binding specificities. Nucleic Acids Res. 2011;39(Database issue):D301-8.
[26]
Huntley RP, Sawford T, Mutowo-Meullenet P, Shypitsyna A, Bonilla C, Martin MJ, O'Donovan C. The GOA database: gene Ontology annotation updates for 2015. Nucleic Acids Res. 2015;43(Database issue):D1057-63.
[27]
Teyra J, Huang H, Jain S, Guan X, Dong A, Liu Y, Tempel W, Min J, Tong Y, Kim PM, Bader GD, Sidhu SS. Comprehensive Analysis of the Human SH3 Domain Family Reveals a Wide Variety of Non-canonical Specificities. Structure. 2017;25(10):1598-1610.e3.
[28]
Frisone P, Pradella D, Di Matteo A, Belloni E, Ghigna C, Paronetto MP. SAM68: Signal transduction and RNA metabolism in human cancer. BioMed Res Int. 2015; 2015: 528954.
[29]
Hong W, Resnick RJ, Rakowski C, Shalloway D, Taylor SJ, Blobel GA. Physical and functional interaction between the transcriptional cofactor CBP and the KH domain protein Sam68. Mol Cancer Res. 2002;1(1):48-55.
[30]
Taylor SJ, Resnick RJ, Shalloway D. Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol. 2004;5:5.
[31]
Yang JP, Reddy TR, Truong KT, Suhasini M, Wong-Staal F. Functional interaction of Sam68 and heterogeneous nuclear ribonucleoprotein K. Oncogene. 2002;21(47):7187-94.
[32]
Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY, Elliott DJ. The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol. 2008;215(1):67-77.