Biopolym. Cell. 2018; 34(2):127-141.
Біоорганічна хімія
Дослідження взаємодії з ДНК серії нових водорозчинних похідних 1,4-дигідропіридину
1Леонова Е., 1Ростока Е., 2Баумане Л., 1, 3Борісовс В., 1Смеловс Е., 2Бісеніекс І., 2Брувере І., 2Бісеніекс Е., 2Дубурс Г., 1, 2Сьяксте Н.
  1. Медичний факультет,
    Латвійський університет
    вул. Шарлотес 1а, Рига, Латвія, LV-1001
  2. Латвійський інститут органічного синтезу
    Вул. Айзкрауклес, 21, Рига, Латвія, LV-1006
  3. Даугавпилсский університет
    Vienības iela 13, Даугавпілс, Латвія, LV-5401

Abstract

Мета. Дослідження способу взаємодії з ДНК серії синтезованих в Латвійському університеті органічного синтезу 1,4-ДГП з різною біологічною активністю. Meтоди. Спорідненість речовин до ДНК визначалося спектрофотометрично і було перевірені ще спектрофлуоріметрічно за виштовхуванням бромистого етидія, циклічної вольтамметріі і за плавленням ДНК. Здатність речовин зв'язувати пероксинітрит визначали спектрофотометрично, здатність пов'язувати гідроксильних радикалів - методом електронного парамагнітного резонансу, здатність захищати ДНК від ушкодження цим радикалом - методом електрофорезу. Результати. У серії водорозчинних моноциклических 1,4-ДГП з карбоксилатного групою у позиції 4, різна спорідненість до ДНК визначалося в основному замысниками у позиціях 3 і 5. 1,4-ДГП з етоксікарбонільним групами у позиціях 3 і 5 (AV-153) ефективно зв'язувався з ДНК. Сильні ефекти спостерігали в спектрах з'єднаних трициклічних похідних 1,4-ДГП (PP-150-Na і PP-544-NH4). На відміну від AV-153, J-4-96 витісняють бромистий етидій з комплексу з ДНК, що вказує на зв'язування цього з'єднання з малої борозенкою ДНК. За даними електрохімічних досліджень і кривих плавлення ДНК PP-544-NH4 повинен інтеркалювати в ДНК. Нам не вдалося зв'язати спорідненість до ДНК зі здатністю речовин зв'язувати пероксинітрит, гідроксильний радикал або захищати ДНК від ушкодження цим радикалом. Висновки. Спорідненість 1,4-ДГП до ДНК визначаються замісниками у позиції 3 і 5. Добре зв'язуються з ДНК також трициклічні 1,4-ДГП. Спорідненість 1,4-ДГП до ДНК не корелює з іншими активностями з'єднання
Keywords: , , , ,

References

[1] Ryabokon NI, Goncharova RI, Duburs G, Rzeszowska-Wolny J. A 1,4-dihydropyridine derivative reduces DNA damage and stimulates DNA repair in human cells in vitro. Mutat Res. 2005;587(1-2):52-8.
[2] Ryabokon NI, Goncharova RI, Duburs G, Hancock R, Rzeszowska-Wolny J. Changes in poly(ADP-ribose) level modulate the kinetics of DNA strand break rejoining. Mutat Res. 2008;637(1-2):173-81.
[3] Ryabokon NI, Cieślar-Pobuda A, Rzeszowska-Wolny J. Inhibition of poly(ADP-ribose) polymerase activity affects its subcellular localization and DNA strand break rejoining. Acta Biochim Pol. 2009;56(2):243-8.
[4] Ryabokon NI, Nikitchenko NV, Dalivelya OV, Goncharova RI, Duburs G, Konopacka M, Rzeszowska-Wolny J. Modulation of cellular defense processes in human lymphocytes in vitro by a 1,4-dihydropyridine derivative. Mutat Res. 2009;679(1-2):33-8.
[5] Keles MS, Bayir Y, Suleyman H, Halici Z. Investigation of effects of Lacidipine, Ramipril and Valsartan on DNA damage and oxidative stress occurred in acute and chronic periods following isoproterenol-induced myocardial infarct in rats. Mol Cell Biochem. 2009;328(1-2):109-17.
[6] López-Alarcón C, Speisky H, Squella JA, Olea-Azar C, Camargo C, Núñez-Vergara LJ. Reactivity of 1,4-dihydropyridines toward SIN-1-derived peroxynitrite. Pharm Res. 2004;21(10):1750-7.
[7] Lob H, Rosenkranz AC, Breitenbach T, Berkels R, Drummond G, Roesen R. Antioxidant and nitric oxide-sparing actions of dihydropyridines and ACE inhibitors differ in human endothelial cells. Pharmacology. 2006;76(1):8-18.
[8] Pal S, Singh V, Das P, Choudhury LH. PEG-mediated one-pot multicomponent reactions for the efficient synthesis of functionalized dihydropyridines and their functional group dependent DNA cleavage activity. Bioorg Chem. 2013;48:8-15.
[9] Hyvönen Z, Plotniece A, Reine I, Chekavichus B, Duburs G, Urtti A. Novel cationic amphiphilic 1,4-dihydropyridine derivatives for DNA delivery. Biochim Biophys Acta. 2000;1509(1-2):451-66.
[10] Lin SJ, Lu HK, Lee HW, Chen YC, Li CL, Wang LF. Nitric oxide inhibits androgen receptor-mediated collagen production in human gingival fibroblasts. J Periodontal Res. 2012;47(6):701-10.
[11] uraka E, Chen CY, Gavare M, Grube M, Makarenkova G, Nikolajeva V, Bisenieks I, Brūvere I, Bisenieks E, Duburs G, Sjakste N. DNA-binding studies of AV-153, an antimutagenic and DNA repair-stimulating derivative of 1,4-dihydropiridine. Chem Biol Interact. 2014;220:200-7.
[12] Leonova E, Sokolovska J, Boucher JL, Isajevs S, Rostoka E, Baumane L, Sjakste T, Sjakste N. New 1,4-Dihydropyridines Down-regulate Nitric Oxide in Animals with Streptozotocin-induced Diabetes Mellitus and Protect Deoxyribonucleic Acid against Peroxynitrite Action. Basic Clin Pharmacol Toxicol. 2016;119(1):19-31.
[13] Robinson KM, Beckman JS. Synthesis of peroxynitrite from nitrite and hydrogen peroxide. Methods Enzymol. 2005;396:207-14.
[14] Zhang S, Sun X, Jing Z, Qu F. Spectroscopic analysis on the resveratrol-DNA binding interactions at physiological pH. Spectrochim Acta A Mol Biomol Spectrosc. 2011;82(1):213-6.
[15] Chen W, Li Y, Li J, Han Q, Ye L, Li A. Myricetin affords protection against peroxynitrite-mediated DNA damage and hydroxyl radical formation. Food Chem Toxicol. 2011;49(9):2439-44.
[16] Ošiņa K, Leonova E, Isajevs S, Baumane L, Rostoka E, Sjakste T, Bisenieks E, Duburs G, Vīgante B, Sjakste N. Modifications of expression of genes and proteins involved in DNA repair and nitric oxide metabolism by carbatonides [disodium-2,6-dimethyl-1,4-dihydropyridine- 3,5-bis(carbonyloxyacetate) derivatives] in intact and diabetic rats. Arh Hig Rada Toksikol. 2017;68(3):212-227.
[17] Carballal S, Bartesaghi S, Radi R. Kinetic and mechanistic considerations to assess the biological fate of peroxynitrite. Biochim Biophys Acta. 2014;1840(2):768-80.
[18] Vijesh AM, Isloor AM, Peethambar SK, Shivananda KN, Arulmoli T, Isloor NA. Hantzsch reaction: synthesis and characterization of some new 1,4-dihydropyridine derivatives as potent antimicrobial and antioxidant agents. Eur J Med Chem. 2011;46(11):5591-7.
[19] Shamsuzzaman, Dar AM, Khan Y, Sohail A. Synthesis and biological studies of steroidal pyran based derivatives. J Photochem Photobiol B. 2013;129:36-47.
[20] Rescifina A, Zagni C, Varrica MG, Pistarà V, Corsaro A. Recent advances in small organic molecules as DNA intercalating agents: synthesis, activity, and modeling. Eur J Med Chem. 2014;74:95-115.
[21] Palchaudhuri R, Hergenrother PJ. DNA as a target for anticancer compounds: methods to determine the mode of binding and the mechanism of action. Curr Opin Biotechnol. 2007;18(6):497-503.
[22] Augustyniak A, Bartosz G, Cipak A, Duburs G, Horáková L, Luczaj W, Majekova M, Odysseos AD, Rackova L, Skrzydlewska E, Stefek M, Strosová M, Tirzitis G, Venskutonis PR, Viskupicova J, Vraka PS, Zarković N. Natural and synthetic antioxidants: an updated overview. Free Radic Res. 2010;44(10):1216-62.