Biopolym. Cell. 2017; 33(3):161-171.
Огляди
Ізоформи білків. Походження, структура та функції
1Новосильна О. В.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Велика кількість білків в організмі ссавців існує у вигляді декількох ізоформ. Ці варіанти кодуються різними гена-ми або є сплайсованими модифікаціями продуктів того ж самого гена. Незважаючи на швидкий інструментальний прогрес у ідентифікації ізоформ, причини їхнього існування та специфічні функції у більшості випадків залишаються достеменно невідомими. Останнім часом увага дослідників здебільшого зосереджена на сплайсованих ізоформах, у той час як різногенні білкові ізоформи можуть відігравати суттєву роль у різних клітинних процесах. У огляді наводяться приклади різних потенційних функцій ізоформ того ж самого білка, які кодуються різними генами. Молекулярне підґрунтя, що може забезпечувати існування такої різниці функцій у високогомологічних білкових ізоформ обговорюється на прикладі останніх досягнень у вивченні ізоформ фактора елонгації трансляції 1A (eEF1A).
Keywords: білкові ізоформи, еукаріотична трансляція, eEF1A

References

[1] Gunning PW. Protein Isoforms and Isozymes. Encyclopedia of Life Sciences. 2006 John Wiley & Sons
[2] Tress ML, Abascal F, Valencia A. Alternative Splicing May Not Be the Key to Proteome Complexity. Trends Biochem Sci 2017; 42(2): 98–110.
[3] Hedman AC, Smith JM, Sacks DB. The biology of IQGAP proteins: beyond the cytoskeleton. EMBO Rep 2015; 16(4): 427–46.
[4] Wang S, Watanabe T, Noritake J, Fukata M, Yoshimura T, Itoh N, Harada T, Nakagawa M, Matsuura Y, Arimura N, Kaibuchi K. IQGAP3, a novel effector of Rac1 and Cdc42, regulates neurite outgrowth. J Cell Sci 2007; 120(Pt 4): 567–77.
[5] Ho YD, Joyal JL, Li Z, Sacks DB. IQGAP1 integrates Ca2+/calmodulin and Cdc42 signaling. J Biol Chem 1999; 274(1): 464–70.
[6] Mateer SC, McDaniel AE, Nicolas V, Habermacher GM, Lin M-JS, Cromer DA, King ME, Bloom GS. The mechanism for regulation of the F-actin binding activity of IQGAP1 by calcium/calmodulin. J Biol Chem 2002; 277(14): 12324–33.
[7] Schmidt VA, Scudder L, Devoe CE, Bernards A, Cupit LD, Bahou WF. IQGAP2 functions as a GTP-dependent effector protein in thrombin-induced platelet cytoskeletal reorganization. Blood 2003; 101(8): 3021–8.
[8] Atcheson E, Hamilton E, Pathmanathan S, Greer B, Harriott P, Timson DJ. IQ-motif selectivity in human IQGAP2 and IQGAP3: binding of calmodulin and myosin essential light chain. Biosci Rep 2011; 31(5): 371–9.
[9] Brill S, Li S, Lyman CW, Church DM, Wasmuth JJ, Weissbach L, Bernards A, Snijders AJ. The Ras GTPase-activating-protein-related human protein IQGAP2 harbors a potential actin binding domain and interacts with calmodulin and Rho family GTPases. Mol Cell Biol 1996; 16(9): 4869–78.
[10] Yang Y, Zhao W, Xu Q-W, Wang X-S, Zhang Y, Zhang J. IQGAP3 promotes EGFR-ERK signaling and the growth and metastasis of lung cancer cells. PLoS One 2014; 9(5): e97578.
[11] Roy M, Li Z, Sacks DB. IQGAP1 is a scaffold for mitogen-activated protein kinase signaling. Mol Cell Biol 2005; 25(18): 7940–52.
[12] Roy M, Li Z, Sacks DB. IQGAP1 binds ERK2 and modulates its activity. J Biol Chem 2004; 279(17): 17329–37.
[13] Adachi M, Kawasaki A, Nojima H, Nishida E, Tsukita S. Involvement of IQGAP family proteins in the regulation of mammalian cell cytokinesis. Genes Cells 2014; 19(11): 803–20.
[14] Smith EA, Fuchs E. Defining the interactions between intermediate filaments and desmosomes. J Cell Biol 1998; 141(5): 1229–41.
[15] Bass-Zubek AE, Godsel LM, Delmar M, Green KJ. Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr Opin Cell Biol 2009; 21(5): 708–16.
[16] Asimaki A, Protonotarios A, James CA, Chelko SP, Tichnell C, Murray B, Tsatsopoulou A, Anastasakis A, te Riele A, Kleber AG, Judge DP, Calkins H, Saffitz JE. Characterizing the Molecular Pathology of Arrhythmogenic Cardiomyopathy in Patient Buccal Mucosa Cells. Circ Arrhythm Electrophysiol 2016; 9(2): e003688.
[17] Dubash AD, Kam CY, Aguado BA, Patel DM, Delmar M, Shea LD, Green KJ. Plakophilin-2 loss promotes TGF-beta1/p38 MAPK-dependent fibrotic gene expression in cardiomyocytes. J Cell Biol 2016; 212(4): 425–38.
[18] Miyazaki K, Yoshizaki K, Arai C, Yamada A, Saito K, Ishikawa M, Xue H, Funada K, Haruyama N, Yamada Y, Fukumoto S, Takahashi I. Plakophilin-1, a Novel Wnt Signaling Regulator, Is Critical for Tooth Development and Ameloblast Differentiation. PLoS One 2016; 11(3): e0152206.
[19] Keil R, Rietscher K, Hatzfeld M. Antagonistic regulation of intercellular cohesion by plakophilins 1 and 3. J Invest Dermatol 2016;136(10):2022-9.
[20] Jang H, Abraham SJ, Chavan TS, Hitchinson B, Khavrutskii L, Tarasova NI, Nussinov R, Gaponenko V. Mechanisms of membrane binding of small GTPase K-Ras4B farnesylated hypervariable region. J Biol Chem 2015; 290(15): 9465–77.
[21] Newlaczyl AU, Coulson JM, Prior IA. Quantification of spatiotemporal patterns of Ras isoform expression during development. Sci Rep 2017; 741297.
[22] Gregory MC, McLean MA, Sligar SG. Interaction of KRas4b with anionic membranes: A special role for PIP2. Biochem Biophys Res Commun 2017; 487(2): 351–5.
[23] Quinlan MP, Settleman J. Isoform-specific ras functions in development and cancer. Future Oncol 2009; 5(1): 105–16.
[24] Furigo IC, Ramos-Lobo AM, Frazao R, Donato JJ. Brain STAT5 signaling and behavioral control. Mol Cell Endocrinol 2016; 438:70-76.
[25] Able AA, Burrell JA, Stephens JM. STAT5-Interacting Proteins: A Synopsis of Proteins that Regulate STAT5 Activity. Biology (Basel) 2017; 6(1):pii: E20
[26] Hennighausen L, Robinson GW. Interpretation of cytokine signaling through the transcription factors STAT5A and STAT5B. Genes Dev 2008; 22(6): 711–21.
[27] Schaller-Schonitz M, Barzan D, Williamson AJK, Griffiths JR, Dallmann I, Battmer K, Ganser A, Whetton AD, Scherr M, Eder M. BCR-ABL affects STAT5A and STAT5B differentially. PLoS One 2014; 9(5): e97243.
[28] Lamba V, Jia B, Liang F. STAT5A and STAT5B have opposite correlations with drug response gene expression. Biochem Biophys Res Commun 2016; 479(2):117-124.
[29] Zanin-Zhorov A, Flynn R, Waksaland SD, Blazar BR. Isoform-specific targeting of ROCK proteins in immune cells. Small GTPases 2016; 1–5.
[30] Gavalda-Navarro A, Mampel T, Vinas O. Changes in the expression of the human adenine nucleotide translocase isoforms condition cellular metabolic/proliferative status. Open Biol 2016; 6(2): 150108.
[31] Lu Y-W, Acoba MG, Selvaraju K, Huang T-C, Nirujogi RS, Sathe G, Pandey A, Claypool SM. Human adenine nucleotide translocases physically and functionally interact with respirasomes. Mol Biol Cell 2017; 28(11): 1489–506.
[32] Madsen HO, Poulsen K, Dahl O, Clark BF, Hjorth JP. Retropseudogenes constitute the major part of the human elongation factor 1 alpha gene family. Nucleic Acids Res 1990; 18(6): 1513–6.
[33] Lee S, Wolfraim LA, Wang E. Differential expression of S1 and elongation factor-1 alpha during rat development. J Biol Chem 1993; 268(32): 24453–9.
[34] Lund A, Knudsen SM, Vissing H, Clark B, Tommerup N. Assignment of human elongation factor 1alpha genes: EEF1A maps to chromosome 6q14 and EEF1A2 to 20q133. Genomics 1996; 36(2): 359–61.
[35] Knudsen SM, Frydenberg J, Clark BF, Leffers H. Tissue-dependent variation in the expression of elongation factor-1 alpha isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1 alpha. Eur J Biochem 1993; 215(3): 549–54.
[36] Bischoff C, Kahns S, Lund A, Jorgensen HF, Praestegaard M, Clark BF, Leffers H. The human elongation factor 1 A-2 gene (EEF1A2): complete sequence and characterization of gene structure and promoter activity. Genomics 2000; 68(1): 63–70.
[37] Vislovukh AA, Naumovets MG, Kovalenko MI, Groisman RS, Groisman IS, Negrutskii BS, El'skaya A V. Isoforms of elongation factor eEF1A may be differently regulated at post-transcriptional level in breast cancer progression. Biopolym Cell 2013; 29(1): 55–63.
[38] Ann DK, Lin HH, Lee S, Tu ZJ, Wang E. Characterization of the statin-like S1 and rat elongation factor 1 alpha as two distinctly expressed messages in rat. J Biol Chem 1992; 267(2): 699–702.
[39] Lee S, Francoeur AM, Liu S, Wang E. Tissue-specific expression in mammalian brain, heart, and muscle of S1, a member of the elongation factor-1 alpha gene family. J Biol Chem 1992; 267(33): 24064–8.
[40] Newbery HJ, Loh DH, O'Donoghue JE, Tomlinson VAL, Chau Y-Y, Boyd JA, Bergmann JH, Brownstein D, Abbott CM. Translation elongation factor eEF1A2 is essential for post-weaning survival in mice. J Biol Chem 2007; 282(39): 28951–9.
[41] Doig J, Griffiths LA, Peberdy D, Dharmasaroja P, Vera M, Davies FJC, Newbery HJ, Brownstein D, Abbott CM. In vivo characterization of the role of tissue-specific translation elongation factor 1A2 in protein synthesis reveals insights into muscle atrophy. FEBS J 2013; 280(24): 6528–40.
[42] Ruest L-B, Marcotte R, Wang E. Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis. J Biol Chem 2002; 277(7): 5418–25.
[43] Abbott CM, Newbery HJ, Squires CE, Brownstein D, Griffiths LA, Soares DC. eEF1A2 and neuronal degeneration. Biochem Soc Trans 2009; 37(Pt 6): 1293–7.
[44] Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH, Collins C, Gray JW, Diebold J, Demetrick DJ, Lee JM. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 2002; 31(3): 301–5.
[45] Pinke DE, Kalloger SE, Francetic T, Huntsman DG, Lee JM. The prognostic significance of elongation factor eEF1A2 in ovarian cancer. Gynecol Oncol 2008; 108(3): 561–8.
[46] Joseph P, O'Kernick CM, Othumpangat S, Lei Y-X, Yuan B-Z, Ong T-M. Expression profile of eukaryotic translation factors in human cancer tissues and cell lines. Mol Carcinog 2004; 40(3): 171–9.
[47] Tomlinson VAL, Newbery HJ, Wray NR, Jackson J, Larionov A, Miller WR, Dixon JM, Abbott CM. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours. BMC Cancer 2005; 5113.
[48] Tomlinson VAL, Newbery HJ, Bergmann JH, Boyd J, Scott D, Wray NR, Sellar GC, Gabra H, Graham A, Williams ARW, Abbott CM. Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus. Br J Cancer 2007; 96(10): 1613–20.
[49] Li Z, Qi C-F, Shin D-M, Zingone A, Newbery HJ, Kovalchuk AL, Abbott CM, Morse HC 3rd. Eef1a2 promotes cell growth, inhibits apoptosis and activates JAK/STAT and AKT signaling in mouse plasmacytomas. PLoS One 2010; 5(5): e10755.
[50] Pellegrino R, Calvisi DF, Neumann O, Kolluru V, Wesely J, Chen X, Wang C, Wuestefeld T, Ladu S, Elgohary N, Bermejo JL, Radlwimmer B, Zornig M, Zender L, Dombrowski F, Evert M, Schirmacher P, Longerich T. EEF1A2 inactivates p53 by way of PI3K/AKT/mTOR-dependent stabilization of MDM4 in hepatocellular carcinoma. Hepatology 2014; 59(5): 1886–99.
[51] Qiu F-N, Huang Y, Chen D-Y, Li F, Wu Y-A, Wu W-B, Huang X-L. Eukaryotic elongation factor-1alpha 2 knockdown inhibits hepatocarcinogenesis by suppressing PI3K/Akt/NF-kappaB signaling. World J Gastroenterol 2016; 22(16): 4226–37.
[52] Kahns S, Lund A, Kristensen P, Knudsen CR, Clark BF, Cavallius J, Merrick WC. The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein. Nucleic Acids Res 1998; 26(8): 1884–90.
[53] Futernyk P V., Negrutskii BS, El'skaya A V. Interaction of different tRNAs with translation elongation factors 1A from lower and higher eukaryotes. Biopolym Cell 2009; 25(6): 457–65.
[54] Trosiuk T V, Shalak VF, Szczepanowski RH, Negrutskii BS, El'skaya A V. A non-catalytic N-terminal domain negatively influences the nucleotide exchange activity of translation elongation factor 1Balpha. FEBS J 2015; 283(3): 484–97.
[55] Takei N, Kawamura M, Ishizuka Y, Kakiya N, Inamura N, Namba H, Nawa H. Brain-derived neurotrophic factor enhances the basal rate of protein synthesis by increasing active eukaryotic elongation factor 2 levels and promoting translation elongation in cortical neurons. J Biol Chem 2009; 284(39): 26340–8.
[56] Barrera I, Flores-Mendez M, Hernandez-Kelly LC, Cid L, Huerta M, Zinker S, Lopez-Bayghen E, Aguilera J, Ortega A. Glutamate regulates eEF1A phosphorylation and ribosomal transit time in Bergmann glial cells. Neurochem Int 2010; 57(7): 795–803.
[57] Tash JS, Attardi B, Hild SA, Chakrasali R, Jakkaraj SR, Georg GI. A novel potent indazole carboxylic acid derivative blocks spermatogenesis and is contraceptive in rats after a single oral dose. Biol Reprod 2008; 78(6): 1127–38.
[58] Mishra AK, Gangwani L, Davis RJ, Lambright DG. Structural insights into the interaction of the evolutionarily conserved ZPR1 domain tandem with eukaryotic EF1A, receptors, and SMN complexes. Proc Natl Acad Sci U S A 2007; 104(35): 13930–5.
[59] Bandyopadhyay U, Sridhar S, Kaushik S, Kiffin R, Cuervo AM. Identification of regulators of chaperone-mediated autophagy. Mol Cell 2010; 39(4): 535–47.
[60] Lukash TO, Turkivska H V, Negrutskii BS, El'skaya A V. Chaperone-like activity of mammalian elongation factor eEF1A: renaturation of aminoacyl-tRNA synthetases. Int J Biochem Cell Biol 2004; 36(7): 1341–7.
[61] Lamberti A, Caraglia M, Longo O, Marra M, Abbruzzese A, Arcari P. The translation elongation factor 1A in tumorigenesis, signal transduction and apoptosis: review article. Amino Acids 2004; 26(4): 443–8.
[62] Borradaile NM, Buhman KK, Listenberger LL, Magee CJ, Morimoto ETA, Ory DS, Schaffer JE. A critical role for eukaryotic elongation factor 1A-1 in lipotoxic cell death. Mol Biol Cell 2006; 17(2): 770–8.
[63] Chen L, Madura K. Increased proteasome activity, ubiquitin-conjugating enzymes, and eEF1A translation factor detected in breast cancer tissue. Cancer Res 2005; 65(13): 5599–606.
[64] Jeganathan S, Morrow A, Amiri A, Lee JM. Eukaryotic elongation factor 1A2 cooperates with phosphatidylinositol-4 kinase III beta to stimulate production of filopodia through increased phosphatidylinositol-4,5 bisphosphate generation. Mol Cell Biol 2008; 28(14): 4549–61.
[65] Shalak VF, Vislovukh AA, Novosylna O V, Khoruzhenko AI, Kovalenko MI, Kolesanova EF, Egorova EA, Mishin AA, Krotevych MS, Skoroda L V. Characterization of novel peptide-specific antibodies against the translation elongation factor eEF1A2 and their application for cancer research. Biopolym Cell 2014; 30(6): 454–61.
[66] Timchenko AA, Novosylna O V, Prituzhalov EA, Kihara H, El'skaya A V, Negrutskii BS, Serdyuk IN. Different oligomeric properties and stability of highly homologous A1 and proto-oncogenic A2 variants of mammalian translation elongation factor eEF1. Biochemistry 2013; 52(32): 5345–53.
[67] Budkevich T V, Timchenko AA, Tiktopulo EI, Negrutskii BS, Shalak VF, Petrushenko ZM, Aksenov VL, Willumeit R, Kohlbrecher J, Serdyuk IN, El'skaya A V. Extended conformation of mammalian translation elongation factor 1A in solution. Biochemistry 2002; 41(51): 15342–9.
[68] Negrutskii B, Vlasenko D, El'skaya A. From global phosphoproteomics to individual proteins: the case of translation elongation factor eEF1A. Expert Rev Proteomics 2012; 9(1): 71–83.
[69] Soares DC, Abbott CM. Highly homologous eEF1A1 and eEF1A2 exhibit differential post-translational modification with significant enrichment around localised sites of sequence variation. Biol Direct 2013; 8:29.
[70] Kanibolotsky DS, Novosyl'na O V, Abbott CM, Negrutskii BS, El'skaya A V. Multiple molecular dynamics simulation of the isoforms of human translation elongation factor 1A reveals reversible fluctuations between "open" and "closed" conformations and suggests specific for eEF1A1 affinity for Ca2+-calmodulin. BMC Struct Biol 2008; 8:4.
[71] Crepin T, Shalak VF, Yaremchuk AD, Vlasenko DO, McCarthy A, Negrutskii BS, Tukalo MA, El'skaya A V. Mammalian translation elongation factor eEF1A2: X-ray structure and new features of GDP/GTP exchange mechanism in higher eukaryotes. Nucleic Acids Res 2014; 42(20): 12939–48.
[72] Chang R, Wang E. Mouse translation elongation factor eEF1A-2 interacts with Prdx-I to protect cells against apoptotic death induced by oxidative stress. J Cell Biochem 2007; 100(2): 267–78.
[73] Lee M-H, Choi BY, Cho Y-Y, Lee S-Y, Huang Z, Kundu JK, Kim MO, Kim DJ, Bode AM, Surh Y-J, Dong Z. Tumor suppressor p16(INK4a) inhibits cancer cell growth by downregulating eEF1A2 through a direct interaction. J Cell Sci 2013; 126(Pt 8): 1744–52.
[74] Novosylna O, Jurewicz E, Pydiura N, Goral A, Filipek A, Negrutskii B, El'skaya A. Translation elongation factor eEF1A1 is a novel partner of a multifunctional protein Sgt1. Biochimie 2015; 119137–45.
[75] Novosylna O, Doyle A, Vlasenko D, Murphy M, Negrutskii B, El'skaya A. Comparison of the ability of mammalian eEF1A1 and its oncogenic variant eEF1A2 to interact with actin and calmodulin. Biol Chem 2017; 398(1): 113–24.
[76] Erasmus JC, Bruche S, Pizarro L, Maimari N, Pogglioli T, Tomlinson C, Lees J, Zalivina I, Wheeler A, Alberts A, Russo A, Braga VMM. Defining functional interactions during biogenesis of epithelial junctions. Nat Commun 2016; 7:13542.
[77] Vlasenko DO, Novosylna O V, Negrutskii BS, El'skaya A V. Truncation of the A,A(*),A` helices segment impairs the actin bundling activity of mammalian eEF1A1. FEBS Lett 2015; 589(11): 1187–93.
[78] Hashimoto Y, Parsons M, Adams JC. Dual actin-bundling and protein kinase C-binding activities of fascin regulate carcinoma cell migration downstream of Rac and contribute to metastasis. Mol Biol Cell 2007; 18(11): 4591–602.
[79] Stevenson RP, Veltman D, Machesky LM. Actin-bundling proteins in cancer progression at a glance. J Cell Sci 2012; 125(Pt 5): 1073–9.