Biopolym. Cell. 2016; 32(4):271-278.
Молекулярна та клітинна біотехнології
Вивчення інгібування іммобілізованої ацетилхолінестерази афлатоксином В1 в складі потенціометричного біосенсора
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680 - Інститут високих технологій,
Київський національний університет імені Тараса Шевченка
пр. Академіка Глушкова 2, кор. 5, Київ, Україна, 03022 - Університет Клода Бернарда Ліон 1, Інститут аналітичних наук, UMR 5280 CNRS / UCBL / ENS,
5, Рю де ла Ду, Віллербанн, Франція, 69100
Abstract
Мета. Визначення типу інгібування іммобілізованої ацетилхолінестерази афлатоксином B1. Методи. Біоселективний елемент потенціометрического біосенсора був створений використовуючи поперечну зшивку ацетилхолінестерази з бичачим сироватковим альбуміном в мембрані за допомогою глутарового альдегіду. Результати. Визначено оптимальні умови роботи потенціометричного біосенсора, такі як рН-оптимум роботи ферменту та його інгібування. Були визначені уявна константа Міхаеліса, а також максимальна початкова швидкість ферментативної реакції іммобілізованої ацетилхолінестерази в складі біосенсора. Тип оборотного інгібування іммобілізованої ацетилхолінестерази афлатоксином В1 в складі потенціометричного біосенсора був ідентифікований з використанням нового графічного методу – методу «ступеня інгібування», отриманий результат був підтверджений за допомогою одного із традиційних методів –Лайнуівера-Берка. Висновки. Це дослідження допомагає зрозуміти механізми інгібування ферменту в складі біосенсора та наближує впровадження біосенсора у виробництво.
Keywords: біосенсор, іммобілізована ацетилхолінестераза, тип інгібування, афлатоксин В1, потенціометричний перетворювач
Повний текст: (PDF, англійською)
References
[1]
Kensler TW, Roebuck BD, Wogan GN, Groopman JD. Aflatoxin: a 50-year odyssey of mechanistic and translational toxicology. Toxicol Sci. 2011;120 Suppl 1:S28-48. Review.
[2]
Var I, Kabak B, Gök F. Survey of aflatoxin B1 in helva, a traditional Turkish food, by TLC. Food Control. 2007;18(1): 59–62.
[3]
Khayoon WS, Saad B, Yan CB, Hashim NH, Ali ASM, Salleh MI, Salleh B. Determination of aflatoxins in animal feeds by HPLC with multifunctional column clean-up. Food Chem. 2010; 118(3):882–6.
[4]
Solfrizzo M, De Girolamo A, Lattanzio VMT, Visconti A, Stroka J, Alldrick A, van Egmond HP. Results of a proficiency test for multi-mycotoxin determination in maize by using methods based on LC-MS. (MS). Qual Assur Saf Crop Foods. 2013;5(1):15–48.
[5]
Pohanka M. Spectrophotomeric assay of aflatoxin B1 using acetylcholinesterase immobilized on standard micro-plates. Anal Lett. 2013;46(8):1306–15.
[6]
Puiu M, Istrate O, Rotariu L, Bala C. Kinetic approach of aflatoxin B1-acetylcholinesterase interaction: a tool for developing surface plasmon resonance biosensors. Anal Biochem. 2012;421(2):587-94.
[7]
Soldatkin OO, Burdak OS, Sergeyeva TA, Arkhypova VM, Dzyadevych SV, Soldatkin AP. Acetylcholinester-ase-based conductometric biosensor for determination of aflatoxin B1. Sens Actuators B Chem. 2013; 188:999–1003.
[8]
Stepurska KV, Soldatkin OO, Arkhypova VM, Soldatkin AP, Lagarde F, Jaffrezic-Renault N, Dzyadevych SV. De-velopment of novel enzyme potentiometric biosensor based on pH-sensitive field-effect transistors for aflatoxin B1 analysis in real samples. Talanta. 2015;144:1079–84.
[9]
Lineweaver H, Burk D. The determination of enzyme dissociation constants. J Am Chem Soc. 1934; 56(3):658–66.
[10]
Butterworth PJ. The use of Dixon plots to study enzyme inhibition. Biochim Biophys Acta. 1972;289(2):251-3.
[11]
Cornish-Bowden A. A simple graphical method for determining the inhibition constants of mixed, uncompetitive and non-competitive inhibitors. Biochem J. 1974;137(1):143-4.
[12]
Atkins GL, Nimmo IA. A comparison of seven methods for fitting the Michaelis-Menten equation. Biochem J. 1975;149(3):775-7.
[13]
Amine A, El Harrad L, Arduini F, Moscone D, Palleschi G. Analytical aspects of enzyme reversible inhibition. Talanta. 2014;118:368-74.
[14]
Benilova IV, Arkhypova VN, Dzyadevych SV, Jaffrezic-Renault N, Martelet C, Soldatkin AP. Kinetics of human and horse sera cholinesterases inhibition with solanaceous glycoalkaloids: study by potentiometric biosensor. Pestic Biochem Physiol. 2006; 86(3):203–10.
[15]
Arkhypova VN, Dzyadevych SV, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N. Development and optimisation of biosensors based on pH-sensitive field effect transistors and cholinesterases for sensitive detection of solanaceous glycoalkaloids. Biosens Bioelectron. 2003;18(8): 1047–53.
[16]
Dzyadevych SV, Arkhypova VN, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N. Enzyme biosensor for tomatine detection in tomatoes. Anal Lett. 2004;37(8):1611–24.
[17]
Dzyadevych SV, Soldatkin AP, El’skaya AV, Martelet C, Jaffrezic-Renault N. Enzyme biosensors based on ion-selective field-effect transistors. Anal Chim Acta. 2006;568(1–2): 248–58.