Biopolym. Cell. 2015; 31(2):97-103.
Структура та функції біополімерів
Хроматин у стані фрактальної глобули: підтвердження за допомогою кометного електрофорезу
1Афанасьєва К. С., 1Чопей М. І., 1Сиволоб А. В.
  1. Навчально-науковий центр «Інститут біології»
    Київського національного університету імені Тараса Шевченка
    вул. Володимирська, 64/13, Київ, Україна, 01601

Abstract

В інтерфазному ядрі хроматин організований у вигляді петельних доменів, що виникають у результаті контактів між віддаленими локусами. Мета роботи полягала у дослідженні розподілу за довжиною петельних доменів ДНК у нуклеоїдах, отриманих шляхом лізису клітин або ізольованих ядер. Методи. Ми застосовували метод електрофорезу ДНК ізольованих клітин для аналізу кінетики міграції петель ДНК із двох типів нуклеоїдів. Результати. Кінетичні криві, що описують вихід ДНК із двох типів нуклеоїдів, відрізнялися декількома особливостями. У той самий час, в обох випадках кількість ДНК в електрофоретичному треку лінійно залежить від розміру найдовших петель у ньому. Висновки. Отримані результати свідчать, що для петель до ~100 kb їхній розподіл за довжиною узгоджуються зі структурою фра­ктальної глобули.
Keywords: петельні домени ДНК, фрактальна глобула, кометний електрофорез, клітинні ядра

References

[1] Woodcock CL, Ghosh RP. Chromatin higher-order structure and dynamics. Cold Spring Harb Perspect Biol. 2010;2(5):a000596.
[2] Kadauke S, Blobel GA. Chromatin loops in gene regulation. Biochim Biophys Acta. 2009;1789(1):17-25.
[3] Wilson RH, Coverley D. Relationship between DNA replication and the nuclear matrix. Genes Cells. 2013;18(1):17-31.
[4] Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013;14(6):390-403.
[5] Gibcus JH, Dekker J. The hierarchy of the 3D genome. Mol Cell. 2013;49(5):773-82.
[6] Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES, Aiden EL. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665-80.
[7] Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326(5950):289-93.
[8] Grosberg AIu, Nechaev SK, Shakhnovich EI. [The role of topological limitations in the kinetics of homopolymer collapse and self-assembly of biopolymers]. Biofizika. 1988;33(2):247-53.
[9] Mirny LA. The fractal globule as a model of chromatin architecture in the cell. Chromosome Res. 2011;19(1):37-51.
[10] Fudenberg G, Mirny LA. Higher-order chromatin structure: bridging physics and biology. Curr Opin Genet Dev. 2012;22(2):115-24.
[11] Bohn M, Heermann DW. Diffusion-driven looping provides a consistent framework for chromatin organization. PLoS One. 2010;5(8):e12218.
[12] Marenduzzo D, Micheletti C, Cook PR. Entropy-driven genome organization. Biophys J. 2006;90(10):3712-21.
[13] Bulger M, Groudine M. Functional and mechanistic diversity of distal transcription enhancers. Cell. 2011;144(3):327-39.
[14] Van Bortle K, Corces VG. Nuclear organization and genome function. Annu Rev Cell Dev Biol. 2012;28:163-87.
[15] Sparmann A, van Lohuizen M. Polycomb silencers control cell fate, development and cancer. Nat Rev Cancer. 2006;6(11):846-56.
[16] Cook PR. A model for all genomes: the role of transcription factories. J Mol Biol. 2010;395(1):1-10.
[17] Kind J, van Steensel B. Genome-nuclear lamina interactions and gene regulation. Curr Opin Cell Biol. 2010;22(3):320-5.
[18] Cremer T, Cremer C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat Rev Genet. 2001;2(4):292-301.
[19] Vassetzky Y, Hair A, M?chali M. Rearrangement of chromatin domains during development in Xenopus. Genes Dev. 2000;14(12):1541-52.
[20] Afanasieva K, Zazhytska M, Sivolob A. Kinetics of comet formation in single-cell gel electrophoresis: loops and fragments. Electrophoresis. 2010;31(3):512-9.
[21] Afanasieva K, Chopei M, Zazhytska M, Vikhreva M, Sivolob A. DNA loop domain organization as revealed by single-cell gel electrophoresis. Biochim Biophys Acta. 2013;1833(12):3237-44.
[22] Ostling O, Johanson KJ. Microelectrophoretic study of radiation-induced DNA damages in individual mammalian cells. Biochem Biophys Res Commun. 1984;123(1):291-8.
[23] Olive PL. The comet assay. An overview of techniques. Methods Mol Biol. 2002;203:179-94.
[24] Collins AR. The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol. 2004;26(3):249-61.
[25] Cook PR, Brazell IA. Supercoils in human DNA. J Cell Sci. 1975;19(2):261-79.
[26] Zazhytska MO, Afanasieva KS, Chopei MI, Vikhreva MA, Sivolob AV. Influence of chloroquine on kinetics of single-cell gel electrophoresis. Biopolym Cell. 2012;28(4):292–7
[27] Afanasieva K, Chopei M, Sivolob A. Single nucleus versus single-cell gel electrophoresis: kinetics of DNA track formation. Electrophoresis. 2015;36(7-8):973-7.
[28] D?az-Mart?nez LA, Gim?nez-Abi?n JF, Clarke DJ. Chromosome cohesion - rings, knots, orcs and fellowship. J Cell Sci. 2008;121(Pt 13):2107-14.
[29] Peters JM, Tedeschi A, Schmitz J. The cohesin complex and its roles in chromosome biology. Genes Dev. 2008;22(22):3089-114.