Biopolym. Cell. 2014; 30(5):358-364.
Геноміка, транскриптоміка та протеоміка
Чутливість дріжджів Sассharomyces cerevisiae,
дефектних за різними ділянками сигнального шляху TOR,
до карбонільного/оксидативного стресу
- Прикарпатський Національний Університет імені Василя Стефаника
вул. Шевченка, 57, Івано-Франківськ, Україна, 76025
Abstract
Мета. Дослідити вплив карбонільного/оксидативного стресу, індукованого гліоксалем, метилгліоксалем та пероксидом водню, на виживання штамів S. cerevisiae, дефектних за різними ділянками TOR-сигнального шляху, за умов їхнього росту у середовищі із глюкозою чи фруктозою. Методи. Оцінка репродуктивної здатності методом визначення кількості колонієутворювальних одиниць. Результати. Показано, що у певних концентраціях дія вищезазначених агентів викликає підвищення рівня виживання. Це свідчить про наявність горметичного ефекту. Висновки. Шлях TOR залучений до горметичного ефекту всіх використаних токсикантів, проте наявність даного ефекту є специфічною для кожного штаму та залежить від типу вуглеводу у середовищі інкубації.
Keywords: Saccharomyces cerevisiae, глюкоза, фруктоза, сигнальний шлях TOR, карбонільний/оксидативний стрес
Повний текст: (PDF, англійською)
References
[1]
Laplante M, Sabatini DM. mTOR signaling in growth control and disease. Cell. 2012;149(2):274-93.
[2]
Heitman J, Movva NR, Hall MN. Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science. 1991;253(5022):905-9.
[3]
Lushchak VI. Budding yeast Saccharomyces cerevisiae as a model to study oxidative modification of proteins in eukaryotes. Acta Biochim Pol. 2006;53(4):679-84.
[4]
Fontana L, Partridge L, Longo VD. Extending healthy life span--from yeast to humans. Science. 2010;328(5976):321-6.
[6]
Summers DW, Cyr DM. Use of yeast as a system to study amyloid toxicity. Methods. 2011;53(3):226-31.
[7]
Kunz J, Henriquez R, Schneider U, Deuter-Reinhard M, Movva NR, Hall MN. Target of rapamycin in yeast, TOR2, is an essential phosphatidylinositol kinase homolog required for G1 progression. Cell. 1993;73(3):585-96.
[8]
Cafferkey R, Young PR, McLaughlin MM, Bergsma DJ, Koltin Y, Sathe GM, Faucette L, Eng WK, Johnson RK, Livi GP. Dominant missense mutations in a novel yeast protein related to mammalian phosphatidylinositol 3-kinase and VPS34 abrogate rapamycin cytotoxicity. Mol Cell Biol. 1993;13(10):6012-23.
[9]
Warburg O, Posener K, Negelein E. Uber den stoffwechsel der carcinomzelle. Die Naturheilkunde. 1924;152:309–44.
[10]
Weinberg RA. The molecular basis of oncogenes and tumor suppressor genes. Ann N Y Acad Sci. 1995;758:331-8.
[12]
Bierer BE, Jin YJ, Fruman DA, Calvo V, Burakoff SJ. FK 506 and rapamycin: molecular probes of T-lymphocyte activation. Transplant Proc. 1991;23(6):2850-5.
[13]
Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol. 2005;17(6):596-603.
[14]
V?zina C, Kudelski A, Sehgal SN. Rapamycin (AY-22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J Antibiot (Tokyo). 1975;28(10):721-6.
[15]
Efeyan A, Zoncu R, Sabatini DM. Amino acids and mTORC1: from lysosomes to disease. Trends Mol Med. 2012;18(9):524-33.
[16]
Appenzeller-Herzog C, Hall MN. Bidirectional crosstalk between endoplasmic reticulum stress and mTOR signaling. Trends Cell Biol. 2012;22(5):274-82.
[17]
Ha CW, Huh WK. Rapamycin increases rDNA stability by enhancing association of Sir2 with rDNA in Saccharomyces cerevisiae. Nucleic Acids Res. 2011;39(4):1336-50.
[18]
Medvedik O, Lamming DW, Kim KD, Sinclair DA. MSN2 and MSN4 link calorie restriction and TOR to sirtuin-mediated lifespan extension in Saccharomyces cerevisiae. PLoS Biol. 2007;5(10):e261.
[19]
Brant JM, Beck S, Dudley WN, Cobb P, Pepper G, Miaskowski C. Symptom trajectories in posttreatment cancer survivors. Cancer Nurs. 2011;34(1):67-77.
[20]
Crespo JL, Hall MN. Elucidating TOR signaling and rapamycin action: lessons from Saccharomyces cerevisiae. Microbiol Mol Biol Rev. 2002;66(4):579-91.
[21]
Beck T, Hall MN. The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature. 1999;402(6762):689-92.
[22]
Semchyshyn H. Hydrogen peroxide-induced response in E. coli and S. cerevisiae: different stages of the flow of the genetic information. Cent Eur J Biol. 2009; 4(2):142–53.
[23]
Robida-Stubbs S, Glover-Cutter K, Lamming DW, Mizunuma M, Narasimhan SD, Neumann-Haefelin E, Sabatini DM, Blackwell TK. TOR signaling and rapamycin influence longevity by regulating SKN-1/Nrf and DAF-16/FoxO. Cell Metab. 2012;15(5):713-24.
[24]
Semchyshyn HM. Hormetic concentrations of hydrogen peroxide but not ethanol induce cross-adaptation to different stresses in budding yeast. Int J Microbiol. 2014;2014:485792.
[25]
Lushchak VI. Dissection of the hormetic curve: analysis of components and mechanisms. Dose Response. 2014;12(3):466-79.
[26]
Bayliak MM, Burdyliuk NI, Izers'ka LI, Lushchak VI. Concentration-Dependent Effects of Rhodiola Rosea on Long-Term Survival and Stress Resistance of Yeast Saccharomyces Cerevisiae: The Involvement of YAP 1 and MSN2/4 Regulatory Proteins. Dose Response. 2013;12(1):93-109.
[27]
Mirisola MG, Longo VD. A radical signal activates the epigenetic regulation of longevity. Cell Metab. 2013;17(6):812-3.
[28]
Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a "chi". Immun Ageing. 2013;10(1):15.
[29]
Ljungdahl PO, Daignan-Fornier B. Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics. 2012;190(3):885-929.
[30]
Semchyshyn HM, Lozinska LM, Miedzobrodzki J, Lushchak VI. Fructose and glucose differentially affect aging and carbonyl/oxidative stress parameters in Saccharomyces cerevisiae cells. Carbohydr Res. 2011;346(7):933-8.
[31]
Semchyshyn HM, Lozinska LM. Fructose protects baker's yeast against peroxide stress: potential role of catalase and superoxide dismutase. FEMS Yeast Res. 2012;12(7):761-73.
[32]
Helliwell SB, Howald I, Barbet N, Hall MN. TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics. 1998;148(1):99-112.
[33]
Meynel J. Meynell GG, Meynell E. Experimental microbiology (Theory and Practice). Moscow, Mir, 1967; 347 p.
[34]
Semchyshyn HM. Reactive carbonyl species in vivo: generation and dual biological effects. ScientificWorldJournal. 2014;2014:417842.
[35]
Semchyshyn HM. Fructation in vivo: detrimental and protective effects of fructose. Biomed Res Int. 2013;2013:343914.
[36]
Semchyshyn HM, Lushchak VI. Interplay between oxidative and carbonyl stresses: molecular mechanisms, biological effects and therapeutic strategies of protection. Oxidative Stress – Molecular mechanisms and biological effects. InTech. 2012; 15–46.
[37]
Lozins'ka LM, Semchyshyn HM. Biological aspects of non-enzymatic glycosylation. Ukr Biokhim Zh. 2012;84(5):16-37.
[38]
Semchyshyn HM, Bayliak MM, Lushchak VI. Starvation in yeasts: biochemical aspects. Biology of starvation in humans and other organisms. Ed. TC. Merkin. New York, Nova Science, 2011;103–50.
[39]
Homza BV, Vasyl'kovs'ka RA, Semchyshyn HM. Defects in TOR regulatory complexes retard aging and carbonyl/oxidative stress development in yeast Saccharomyces cerevisiae. Ukr Biokhim Zh. 2014;86(1):85-92.
[40]
Lushchak VI. Oxidative stress and mechanisms of protection against it in bacteria. Biochemistry (Mosc). 2001;66(5):476-89.
[41]
Semchyshyn HM. Defects in antioxidant defence enhance glyoxal toxicity in the yeast Saccharomyces cerevisiae. Ukr Biokhim Zh. 2013;85(5):50-60.
[42]
Turk Z. Glycotoxines, carbonyl stress and relevance to diabetes and its complications. Physiol Res. 2010;59(2):147-56.
[43]
Kalapos MP. Methylglyoxal in living organisms: chemistry, biochemistry, toxicology and biological implications. Toxicol Lett. 1999;110(3):145-75.
[44]
Richard JP. Mechanism for the formation of methylglyoxal from triosephosphates. Biochem Soc Trans. 1993;21(2):549-53.