Biopolym. Cell. 2014; 30(3):190-196.
Структура та функції біополімерів
Використання методу MALDI-TOF масс-спектрометрії для
вивчення фібрилярних та олігомерних агрегатів альфа-синуклеїну
- Інститут хімії поверхні ім. О. О. Чуйка НАН України
вул. Генерала Наумова, 17, Київ, Україна, 03164 - Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680 - Інститут фізики НАН України
проспект Науки, 46, Київ, Україна, 03028 - Група нанобіофізікі, MESA та Інститут нанотехнологій і MIRA Інституту медико-біологічних технологій, Університет Твенте
PO Box 217, 7500 AE Енсхеде, Нідерланди
Abstract
Мета. Вивчення агрегатів альфа-синуклеїну (ASN) різного структурового походження, а саме – амілоїдних фібрил і сферичних олігомерів порівняно з нативним білком. Методи. MALDI-TOF мас-спектрометрія та атомно-силова мікроскопія (АFМ). Результати. Мас-спектри нативного і фібрилярного ASN мають подібний характер – для них характерні інтенсивний пік молекулярного іона білка, піки низькомолекулярних асоціатов та досить незначний вміст продуктів фрагментації білка. У той же час у спектрі олігомерних агрегатів спостерігаються висока концентрація продуктів фрагментації білка, низька інтенсивність молекулярного іона та відсутність піків самоасоціатів. Висновки. Різницю між спектрами фибрилярного та олігомерного ASN можна пояснити як наявністю у зразках «залишкового» ASN і продуктів деградації білка, так і різними структурово залежними механізмами руйнування цих двох видів агрегатів при лазерній десорбції/іонізації. MALDI-TOF мас-спектрометрію можна запропонувати як метод вивчення агрегації та аналізу високомолекулярних агрегатів ASN. Також представляє інтерес визначення ефективності цього методу для дослідження агрегатів різних амілоїдогенних білків.
Keywords: альфа-синуклеїн, MALDI-TOF, амілоїдна фібрила, олігомерні агрегати, АFМ
Повний текст: (PDF, англійською)
References
[1]
Green J, Goldsbury C, Mini T, Sunderji S, Frey P, Kistler J, Cooper G, Aebi U. Full-length rat amylin forms fibrils following substitution of single residues from human amylin. J Mol Biol. 2003;326(4):1147-56.
[2]
Marvin LF, Roberts MA, Fay LB. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta. 2003;337(1-2):11-21.
[3]
Nazabal A, Weber J. Characterization and quantitation of antibody aggregates by high mass MALDI mass spectrometry. J Biomol Tech. 2010; 21(3 Suppl): S36.
[4]
Metods in enzymology. Amyloid, prions and other protein aggre- gates, part C. Eds I. Kheterpal, R. Wetzel. Amsterdam, Elsevier Inc., 2006; Vol. 413. 375 p.
[5]
Hamada D, Dobson CM. A kinetic study of beta-lactoglobulin amyloid fibril formation promoted by urea. Protein Sci. 2002;11(10):2417-26.
[6]
Uversky VN. Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem. 2007;103(1):17-37.
[7]
Bartels AL, Leenders KL. Parkinson's disease: the syndrome, the pathogenesis and pathophysiology. Cortex. 2009;45(8):915-21.
[8]
Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol. 2002;322(5):1089-102.
[9]
Volles MJ, Lansbury PT Jr. Zeroing in on the pathogenic form of alpha-synuclein and its mechanism of neurotoxicity in Parkinson's disease. Biochemistry. 2003;42(26):7871-8.
[10]
Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry. 2001;40(26):7812-9.
[11]
van Raaij ME, Segers-Nolten IM, Subramaniam V. Quantitative morphological analysis reveals ultrastructural diversity of amyloid fibrils from alpha-synuclein mutants. Biophys J. 2006;91(11):L96-8.
[12]
van Rooijen BD, Claessens MM, Subramaniam V. Lipid bilayer disruption by oligomeric alpha-synuclein depends on bilayer charge and accessibility of the hydrophobic core. Biochim Biophys Acta. 2009;1788(6):1271-8.
[13]
Dekina SS, Romanovska II, Gromovoy TYu. Influence of polymers on lysozyme molecules association. Biopolym Cell. 2011; 27(6):442–445.
[14]
Sode K, Ochiai S, Kobayashi N, Usuzaka E. Effect of reparation of repeat sequences in the human alpha-synuclein on fibrillation ability. Int J Biol Sci. 2006;3(1):1-7.
[15]
Wang W, Perovic I, Chittuluru J, Kaganovich A, Nguyen LT, Li- ao J, Auclair JR, Johnson D, Landeru A, Simorellis AK, Ju S, Co- okson MR, Asturias FJ, Agar JN, Webb BN, Kang C, Ringe D, Petsko GA, Pochapsky TC, Hoang QQ. A soluble a-synuclein construct forms a dynamic tetramer. Proc Natl Acad Sci USA. 2011;108(43):17797–802.
[17]
Cho MK, Kim HY, Fernandez CO, Becker S, Zweckstetter M. Conserved core of amyloid fibrils of wild type and A30P mutant ?-synuclein. Protein Sci. 2011;20(2):387-95.
[18]
Volkova KD, Kovalska VB, Yu Losytskyy M, Veldhuis G, Segers-Nolten GM, Tolmachev OI, Subramaniam V, Yarmoluk SM. Studies of interaction between cyanine dye T-284 and fibrillar alpha-synuclein. J Fluoresc. 2010;20(6):1267-74.
[19]
Apetri MM, Maiti NC, Zagorski MG, Carey PR, Anderson VE. Secondary structure of alpha-synuclein oligomers: characterization by raman and atomic force microscopy. J Mol Biol. 2006;355(1):63-71.
[20]
Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr. Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson's disease: implications for pathogenesis and therapy. Proc Natl Acad Sci U S A. 2000;97(2):571–6.
[21]
Lashuel HA, Petre BM, Wall J, Simon M, Nowak RJ, Walz T, Lansbury PT Jr. Alpha-synuclein, especially the Parkinson's disease-associated mutants, forms pore-like annular and tubular protofibrils. J Mol Biol. 2002;322(5):1089-102.
[22]
Ding TT, Lee SJ, Rochet JC, Lansbury PT Jr. Annular alpha-synuclein protofibrils are produced when spherical protofibrils are incubated in solution or bound to brain-derived membranes. Biochemistry. 2002;41(32):10209-17.
[23]
Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B, Kagan B, Ghiso J, Lal R. Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A. 2005;102(30):10427-32.
[24]
Volles MJ, Lee SJ, Rochet JC, Shtilerman MD, Ding TT, Kessler JC, Lansbury PT Jr. Vesicle permeabilization by protofibrillar alpha-synuclein: implications for the pathogenesis and treatment of Parkinson's disease. Biochemistry. 2001;40(26):7812-9.
[25]
Kaylor J, Bodner N, Edridge S, Yamin G, Hong DP, Fink AL. Characterization of oligomeric intermediates in alpha-synuclein fibrillation: FRET studies of Y125W/Y133F/Y136F alpha-synuclein. J Mol Biol. 2005;353(2):357-72.
[26]
Kovalska VB, Losytskyy MY, Tolmachev OI, Slominskii YL, Segers-Nolten GM, Subramaniam V, Yarmoluk SM. Tri- and pentamethine cyanine dyes for fluorescent detection of ?-synuclein oligomeric aggregates. J Fluoresc. 2012;22(6):1441-8.