Biopolym. Cell. 2014; 30(1):10-15.
Огляди
Нові аспекти агрегації тромбоцитів
- Інститут біохімії ім. О. В. Палладіна НАН України
вул. Леонтовича, 9, Київ, Україна, 01601
Abstract
Відомо, що агрегація тромбоцитів – це важливий процес, який лежить в основі утворення гемостатичної пробки та формування тромба. Однак останні дослідження показали, що тромбоцитарна агрегація є значно складнішим і динамічнішим процесом, ніж вважали раніше. Існує декілька механізмів, які ініціюють агрегацію тромбоцитів, і кожен із них реалізується за певних умов in vivo. У той же час необхідно враховувати вплив на цей процес окремих білків плазми крові. Мета даного огляду – узагальнити сучасні дані, присвячені адгезивним молекулам та їхнім рецепторам, які забезпечують тромбоцитарну агрегацію за різних умов.
Keywords: агрегація тромбоцитів, адгезивні молекули
Повний текст: (PDF, англійською)
References
[1]
Semple JW, Italiano JE Jr, Freedman J. Platelets and the immune continuum. Nat Rev Immunol. 2011; 11(4):264–74.
[2]
Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O'Donnell E, Farndale RW, Ware J, Lee DM. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010; 327(5965):580–3.
[4]
Bluestein D, Niu L, Schoephoerster RT, Dewanjee MK. Fluid mechanics of arterial stenosis: relationship to the development of mural thrombus. Ann Biomed Eng. 1997; 25(2):344–56.
[5]
Li Z, Delaney MK, O'Brien KA, Du X. Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol. 2010; 30(12):2341–9.
[6]
Jurk K, Clemetson KJ, de Groot PG, Brodde MF, Steiner M, Savion N, Varon D, Sixma JJ, Van Aken H, Kehrel BE. Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GP Ib) an alternative/ backup mechanism to von Willebrand factor. FASEB J. 2003; 17(11):1490–1492.
[7]
Zubovskaja ET, Svetlizkaja SG. Hemostasis system. Theoretic bases and investigation methods Minsk: BGUFK, 2010; 310 p.
[8]
Siedlecki CA, Lestini BJ, Kottke-Marchant KK, Eppel SJ, Wilson DL, Marchant RE. Shear-dependent changes in the three-dimensional structure of human von Willebrand factor. Blood. 1996; 88(8):2939–350.
[9]
Wohner N. Role of cellular elements in thrombus formation and dissolution. Cardiovasc Hematol Agents Med Chem. 2008; 6(3):224–8.
[10]
Moser M, Nieswandt B, Ussar S, Pozgajova M, Fassler R. Kindlin-3 is essential for integrin activation and platelet aggregation. Nat Med. 2008; 14(3):325–30.
[11]
Broos K, De Meyer SF, Feys HB, Vanhoorelbeke K, Deckmyn H. Blood platelet biochemistry. Thromb Res. 2012; 129(3):245–9.
[12]
Shattil SJ, Newman PJ. Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood. 2004; 104(6):1606–15.
[13]
Jirouskova M, Jaiswal JK, Coller BS. Ligand density dramatically affects integrin alpha IIb beta 3-mediated platelet signaling and spreading. Blood. 2007; 109(12):5260–9.
[14]
Fox JE. Transmembrane signaling across the platelet integrin glycoprotein IIb-IIIa. Ann. N. Y. Acad. Sci 1994 714):75–87.
[15]
Fox JE. The platelet cytoskeleton. Thromb Haemost. 1993; 70(6):884–93.
[16]
Leisner TM, Wencel-Drake JD, Wang W, Lam SC. Bidirectional transmembrane modulation of integrin alphaIIbbeta3 conformations. J Biol Chem.1999; 274(18):12945–9.
[17]
Kurtz L., Kao L., Newman D., Kurtz I., Zhu Q. Integrin aIIbb3 inside-out activation: an in situ conformational analysis reveals a new mechanism. J Biol Chem. 2012; 287(27):23255–65.
[18]
May JA, Ratan H, Glenn JR, Losche W, Spangenberg P, Heptinstall S. GPIIb-IIIa antagonists cause rapid disaggregation of platelets pre-treated with cytochalasin D. Evidence that the stability of platelet aggregates depends on normal cytoskeletal assembly. Platelets. 1998; 9(3–4):227–32.
[19]
Tykhomyrov AA. Interaction of actin with plasminogen/plasmin system: mechanisms and physiological role. Biopolym Cell. 2012; 28(6):413–23.
[20]
Jennings LK. Mechanisms of platelet activation: need for new strategies to protect against platelet-mediated atherothrombosis. Thromb Haemost. 2009; 102(2):248–57.
[21]
Fabre JE, Nguyen M. Latour A, Keifer JA, Audoly LP, Coffman TM, Koller BH. Decreased platelet aggregation, increased bleeding time and resistance to thromboembolism in P2Y1- deficient mice. Nat Med. 1999; 5(10):1199–202.
[22]
Dorsam RT, Kunapuli SP. Central role of P2Y912 receptor in platelet activation. J Clin Invest. 2004; 113(3):340–5.
[23]
Dale GL, Friese P, Batar P, Hamilton SF, Reed GL, Jackson KW, Clemetson KJ, Alberio L. Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature. 2002; 415(6868):175–9.
[24]
Singbartl K, Forlow SB, Ley K. Platelet, but not endothelial, P-selectin is critical for neutrophil-mediated acute postishemic renal failure. FASEB J. 2001; 15(13):2337–44.
[25]
Marguerie G., Ginsberg M. H., Plow E. F. Glycoproteins: the fibrinogen receptor. Platelet responses and metabolism. Response-metabolism relationships. Ed. H. Holmsen BocaRaton: CRC Press. Inc., 1986 Vol. III–P. 286–94.
[26]
Gralnick HR, Williams SB, Coller BS. Fibrinogen competes with von Willebrand factor for binding to the glycoprotein IIb /IIa complex when platelets are stimulated with thrombin. Blood. 1984; 64(4):797–800.
[27]
Ni H, Denis CV, Subbarao S, Degen JL, Sato TN, Hynes RO, Wagner DD. Persistence of platelet thrombus formation in arterioles of mice lacking both von Willebrand factor and fibrinogen. J Clin Invest. 2000; 106(3):385–92.
[28]
Reheman A, Gross P, Yang H, Chen P, Allen D, Leytin V, Freedman J, Ni H. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J Thromb Haemost. 2005; 3(5):875–83.
[29]
Ruggeri ZM. Mechanisms of shear-induced platelet adhesion and aggregation. Thromb Haemost. 1993; 70(1):119–23.
[30]
Ni H, Yuen PS, Papalia JM, Trevithick JE, Sakai T, Fassler R, Hynes RO, Wagner DD. Plasma fibronectin promotes thrombus growth and stability in injured arteriols. Proc Natl Acad Sci USA. 2003; 100(5):2415–9.
[31]
Cho J, Mosher DF. Role of fibronectin assembly in platelet thrombus formation. J Thromb Haemost. 2006; 4(7):1461–9.
[32]
Hynes RO. The dynamic dialogue between cells and matrices: implications of fibronectin's elasticity. Proc Natl Acad Sci USA. 1999; 96(6):2588–90.
[34]
Lishko VK, Novokhatny VV, Yakubenko VP, Skomorovska-Prokvolit HV, Ugarova TP. Characterization of plasminogen as an adhesive ligand for integrins aMb2 (Mac-1) and a5b1 (VLA-5). Blood. 2004; 104(3):719–26.
[35]
Horne MK, Merryman PK, Cullinane AM. Plasminogen interaction with platelets: the importance of carboxyterminal lysines. Thromb Res. 2005; 116(6):499–507.
[36]
Salobir B, Sabovic M, Zupan IP, Ponikvar JB. Platelet (dys) function and plasma plasminogen levels in hemodialysis patients. Ther Apher Dial. 2008; 12(2):133–6.
[37]
Roka-Moya YM, Zhernossekov DD, Zolotareva EM, Grinenko TV. The influence of exogenous Lys-plasminogen on ADP-induced platelet aggregation. Bulletin of Taras Shevchenko National University of Kyiv. Series: Biology. 2011; 58:34–6.
[38]
Roka-Moya YM, Zhernossekov DD, Grinenko TV. Plasminogen/plasmin influence on platelet aggregation. Biopolym Cell. 2012; 28(5):352–6.
[39]
Holvoet P, Lijnen HR, Collen D. A monoclonal antibody specific for Lys-plasminogen. Application to the study of the activation pathways of plasminogen in vivo. J Biol Chem. 1985; 260(22):12106–11.
[40]
Saba HI, Saba SR, Morelli GA. Effect of heparin on platelet aggregation. Am J Hematol. 1984; 17(3):295–306.
[41]
Gao C, Boylan B, Fang J, Wilcox DA, Newman DK, Newman PJ. Heparin promotes platelet responsiveness by potentiating aIIb3-mediated outside-in signaling. Blood. 2011; 117(18):4946–52.
[42]
Fujimura Y, Titani K, Holland LZ, Roberts JR, Kostel P, Ruggeri ZM, Zimmerman TS. A heparin-binding domain of human von Willebrand factor: characterization and localization to a tryplic fragment extending from amino acid residue Val-449 to Lys-728. J Biol Chem. 1987; 262(4):1734–9.
[43]
Bentley KL, Klebe RJ, Hurst RE, Horowitz PM. Heparin binding is necessary, but not sufficient for fibronectin aggregation. A fluorescence polarization study. J Biol Chem. 1985; 260(12):7250–6.
[44]
Yu H, Tyrrel D, Cashel J, Guo NH, Vogel T, Sipes JM, Lam L, Fillit HM, Hartman J, Mendelovitz S, Panel A, Roberts DD. Specificities of heparin-binding sites from the amino-terminus and type 1 repeats of thrombospondin-1. Arch Biochem Biophys. 2000; 374(1):13–23.
[45]
Edens RE, LeBrun LA, Linhardt RJ, Kaul PR, Weiler JM. Certain high molecular weight heparin chains have high affinity for vitronectin. Arch Biochem Biophys. 2001; 391(2):278–85.