Biopolym. Cell. 2013; 29(6):468-472.
Структура та функції біополімерів
Адапторний білок TDRD7 співлокалізується з кіназами S6 рибосомного білка S6K1 і S6K2 у клітинних лініях різного тканинного походження
1Скороход О. М., 1Хоруженко А. І., 1Філоненко В. В.
  1. Державна ключова лабораторія молекулярної і клітинної біології
    Інститут молекулярної біології і генетики НАН України
    вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Раніше нами показано, що протеїнові кінази S6K1 і S6K2 формують комплекси з нещодавно ідентифікованим адапторним білком TDRD7, залученим до регуляції динаміки цитоскелету, транспорту мРНК, трансляції білків, процесингу піРНК та сайленсингу транспозонів. Мета. Визначення субклітинної локалізації можливих комплексів S6K1– TDRD7 і S6K2–TDRD7. Методи. Клітинні лінії HEK293, HEPG2 і первинна культура нейронів гіпокампу щура використано для імунофлуоресцентного аналізу із застосуванням поліклональних анти-S6K1 антитіл та моноклональних анти-S6K2 і анти-TDRD7 антитіл. Результати. Виявлено, що S6K1 співлокалізується з TDRD7 переважно в навколоядерній зоні клітин НЕК293. Окрім того, S6K1 і S6K2 співлокалізуються з TDRD7 також переважно у навколоядерній ділянці клітин HEPG2 та в сомі первинної культури нейронів гіпокампу щура. Висновки. Отримано додаткові експериментальні свідчення щодо формування комплексів S6K1– TDRD7 і S6K2–TDRD7 у клітинах різного тканинного походження, що, ймовірно, підтверджує їхню фізіологічну значущість. Втім, для визначення точного складу комплексів і з’ясування їхньої ролі у клітинах необхідні додаткові дослідження.
Keywords: S6K1, S6K2, TDRD7, імуноцитофлуоресцентний аналіз

References

[1] Gout I., Minami T., Hara K., Tsujishita Y., Filonenko V., Waterfield M. D., Yonezawa K. Molecular cloning and characterization of a novel p70 S6 kinase, p70 S6 kinase beta containing a proline-rich region J. Biol. Chem 1998 273, N 46:30061– 30064.
[2] Fenton T., Gout I. Functions and regulation of the 70 kDa ribosomal S6 kinases Int. J. Biochem. Cell. Biol 2011 43, N 1 P. 47–59.
[3] Grove J. R., Banerjee P., Balasubramanyam A., Coffer P. J., Price D. J., Avruch J., Woodgett J. R. Cloning and expression of two human p70 S6 kinase polypeptides differing only at their amino termini Mol. Cell Biol 1991 11, N 11:5541–5550.
[4] Saitoh M., ten Dijke P., Miyazono K., Ichijo H. Cloning and characterization of p70(S6K beta) defines a novel family of p70 S6 kinases Biochem. Biophys. Res. Commun 1998 253, N 2 P. 470–476.
[5] Jeno P., Ballou L. M., Novak-Hofer I., Thomas G. Identification and characterization of a mitogen-activated S6 kinase Proc. Natl Acad. Sci. USA 1988 85, N 2:406–410.
[6] Koh H., Jee K., Lee B., Kim J., Kim D., Yun Y., Kim J. W., Choi H. S., Chung J. Cloning and characterization of a nuclear S6 kinase, S6 kinase-related kinase (SRK); a novel nuclear target of Akt Oncogene 1999 18, N 36:5115–5119.
[7] Andres J., Johansen J. W., Maller J. L. Identification of protein phosphatases 1 and 2B as ribosomal protein S6 phosphatases in vitro and in vivo J. Biol. Chem 1987 262, N 30:14389– 14393.
[8] Thomas G. The S6 kinase signalling pathway in the control of development and growth Biol. Res 2002 35, N 2:305–313.
[9] Valovka T., Verdier F., Cramer R., Zhyvoloup A., Fenton T., Rebholz H., Wang M., Gzhegotsky M., Lutsyk A., Matsuka G., Filonenko V., Wang L., Proud C. G., Parker P. J., Gout I. T. Protein kinase C phosphorylates ribosomal protein S6 kinase beta II and regulates its subcellular localization Mol. Cell Biol 2003 23, N 3 P: 852–863.
[10] Panasyuk G. G., Nemzanyy I. O., Zhyvoloup A. M., Filonenko V. V., Gout I. T. The beta subunit of casein kinase 2 as a novel binding partner of the ribosomal protein S6 kinase 1 Biopolym. Cell 2005 21, N 5:407–412.
[11] Skorokhod O., Panasyuk G., Nemazanyy I., Gout I., Filonenko V. Identification of Tudor domain containing 7 protein as a novel binding partner and substrate for ribosomal S6Ks Ukr. Biokhim Zh 2013 85, N 6:46–52.
[12] Hirose T., Kawabuchi M., Tamaru T., Okumura N., Nagai K., Okada M. Identification of tudor repeat associator with PCTAIRE 2 (Trap). A novel protein that interacts with the N-terminal domain of PCTAIRE 2 in rat brain Eur. J. Biochem 2000 267, N 7:2113–2121.
[13] Yamochi T., Nishimoto I., Tsukasa O., Matsuoka M. ik3-1/Cables is associated with Trap and Pctaire2 Biochem. Biophys. Res. Commun 2001 286, N 5:1045–1050.
[14] Lachke S. A., Alkuraya F. S., Kneeland S. C., Ohn T., Aboukhalil A., Howell G. R., Saadi I., Cavallesco R., Yue Y., Tsai A. C., Nair K. S., Cosma M. I., Smith R. S., Hodges E., Alfadhli S. M., AlHajeri A., Shamseldin H. E., Behbehani A., Hannon G. J., Bulyk M. L., Drack A. V., Anderson P. J., John S. W., Maas R L. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma Science 2011 331, N 6064:1571–1576.
[15] Chuma S., Hosokawa M., Kitamura K., Kasai S., Fujioka M., Hiyoshi M., Takamune K., Noce T., Nakatsuji N. Tdrd1/Mtr-1, a tudor-related gene, is essential for male germ-cell differentiation and nuage/germinal granule formation in mice Proc. Natl Acad. Sci. USA 2006 103, N 43:15894–15899.
[16] Hosokawa M., Shoji M., Kitamura K., Tanaka T., Noce T., Chuma S., Nakatsuji N. Tudor-related proteins TDRD1/MTR-1, TDRD6 and TDRD7/TRAP: domain composition, intracellular localization, and function in male germ cells in mice Dev. Biol 2007 301, N 1:38–52.
[17] Kotaja N., Bhattacharyya S. N., Jaskiewicz L., Kimmins S., Parvinen M., Filipowicz W., Sassone-Corsi P. The chromatoid body of male germ cells: similarity with processing bodies and presence of Dicer and microRNA pathway components Proc. Natl Acad. Sci. USA 2006 103, N 8:2647–2652.
[18] Conte N., Delaval B., Ginestier C., Ferrand A., Isnardon D., Larroque C., Prigent C., Seraphin B., Jacquemier J., Birnbaum D. TACC1-chTOG-Aurora A protein complex in breast cancer Oncogene 2003 22, N 50:8102–8116.
[19] Skorokhod O. M., Gudkova D. O., Filonenko V. V. Identification of a novel TDRD7 isoforms Biopolym. Cell 2011 27, N 6:459–464.
[20] Skorokhod O., Nemazanyy I., Breus O., Filonenko V., Panasyuk G. Generation and characterization of monoclonal antibodies to TDRD7 protein Hybridoma (Larchmt) 2008 27, N 3 P. 211–216.
[21] Valovka T., Filonenko V., Velykyi M., Drobot L. B., Woterfill M., Matsuka G. Kh., Gout I. Features of fibronectin-dependent activation of ribosomal protein S6 kinase (S6K1 and S6K2) Ukr. Biokhim. Zh 2000 72, N 3. P. 31–37.
[22] Gudkova D. O., Panasyuk G. G., Nemazanyy I. O., Filonenko V. V. Novel antibodies against RCD-8 as a tool to study processing bodies Biopolym. Cell 2010 26, N6:512–516.
[23] Zhyvoloup A., Nemazanyy I., Babich A., Panasyuk G., Pobigailo N., Vudmaska M., Naidenov V., Kukharenko O., Palchevskii S., Savinska L., Ovcharenko G., Verdier F., Valovka T., Fenton T., Rebholz H., Wang M., Shepherd P., Matsuka G., Filonenko V., Gout I. Molecular cloning of CoA Synthase. The missing link in CoA biosynthesis J. Biol. Chem 2002 277, N 25:22107– 22110.
[24] Minami T., Hara K., Oshiro N., Ueoku S., Yoshino K., Tokunaga C., Shirai Y., Saito N., Gout I., Yonezawa K. Distinct regulatory mechanism for p70 S6 kinase beta from that for p70 S6 kinase alpha Genes Cells 2001 6, N 11:1003–1015.
[25] Reinhard C., Fernandez A., Lamb N. J., Thomas G. Nuclear localization of p85s6k: functional requirement for entry into S phase EMBO J 1994 13, N 7:1557–1565.
[26] Kim J. E., Chen J. Cytoplasmic-nuclear shuttling of FKBP12-rapamycin-associated protein is involved in rapamycin-sensitive signalling and translation initiation Proc. Natl Acad. Sci. USA 2000 97, N 26:14340–14345.
[27] Edelmann H., Kuhne C., Petritsch C., Ballou L. Cell cycle regulation of p70 S6 kinase and p42/p44 mitogen-activated protein kinases in Swiss mouse 3T3 fibroblasts J. Biol. Chem 1996 271, N 2:963–971.
[28] Vasileva A., Tiedau D., Firooznia A., Muller-Reichert T., Jessberger R. Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression Curr. Biol 2009 19, N 8:630–639.
[29] Filonenko V. V. PI3K/mTOR/S6K signaling pathway – new players and new functional links Biopolym. Cell 2013 29, N 3:207–214.