Biopolym. Cell. 2013; 29(6):443-453.
Огляди
Збільшення біомаси рослин: останні досягнення генетичної інженерії
1Сахно Л. О.
  1. Інститут клітинної біології та генетичної інженерії НАН України
    вул. Академіка Заболотного, 148, Київ, Україна, 03680

Abstract

Вирішення завдань збільшення біомаси рослин з використанням трансгенезу роглянуто як на модельних об’ектах, так і на прикладах сільськогосподарських культур, вирощуваних за оптимальних і контрольованих стресових (теплиця або клімакамера) та польових умов. Показано, що генно-інженерні підходи дозволяють досягти подвоєння біомаси за оптимальних умов. І трансгенні, і вихідні рослини зменшують накопичення біомаси внаслідок дії стресових факторів. Продемонстровано, що трансгенні рослини здатні збільшувати свою продуктивність до двох разів порівняно з нетрансформованими за умов стресу. Обговорюються деякі особливості гетерологічної експресії генів, які впливають на накопичення біомаси.
Keywords: біомаса, стрес, суха маса, сира маса, трансгенні рослини

References

[1] Ragauskas A. J., Williams C. K., Davison B. H., Britovsek G., Cairney J., Eckert C. A., Frederick W. J. Jr., Hallett J. P., Leak D. J., Liotta C.L., Mielenz J. R., Murphy R., Templer R., Tschaplinski T. The path forward for biofuels and biomaterials Science 2006 311, N 5759:484–489.
[2] Demura T., Ye Z. H. Regulation of plant biomass production Curr. Opin. Plant Biology 2010 13, N 3:299–304.
[3] Crawford N. M. Nitrate: nutrient and signal for plant growth Plant Cell 1995 7, N 7:859–868.
[4] Vance C. P., Uhde-Stone C., Allan D. L. Phosphorus acquisition and use: critical adaptations by plants for securing a non-renewable resource New Phytol 2003 157, N 3:423–447.
[5] Dechorgnat J., Nguyen C. T., Armengaud P., Jossier M., Diatloff E., Filleur S., Daniel-Vedele F. From the soil to the seeds: the long journey of nitrate in plants J. Exp. Bot 2011 62, N 4 P. 1349–1359.
[6] McAllister C. H., Beatty P. H., Good A. G. Engineering nitrogen use efficient crop plants: the current status Plant Biotechnol. J 2012 10, N 9:1011–1025.
[7] Peterhansel C., Niessen M., Kebeish R. M. Metabolic engineering towards the enhancement of photosynthesis Photochem. Photobiol 2008 84, N 6:1317–1323.
[8] Poorter H., Niklas K. J., Reich P. B., Oleksyn J., Poot P., Mommer L. Biomass allocation to leaves, stems and roots: meta-analyses of interspecific variation and environmental control New Phytol 2012 193, N 1:30–50.
[9] Zhao B., Li J. Regulation of brassinosteroid biosynthesis and inactivation J. Integr. Plant Biol 2012 54, N 10:746–759.
[10] Wang Y., Beaith M., Chalifoux M., Ying J., Uchacz T., Sarvas C., Griffiths R., Kuzma M., Wan J., Huang Y. Shoot-specific downregulation of protein farnesyltransferase (alpha-subunit) for yield protection against drought in canola Mol. Plant 2009 2, N 1 P. 191–200.
[11] Eriksson M. E., Israelsson M., Olsson O., Moritz T. Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length Nat. Biotechnol 2000 18, N 7:784–788.
[12] Kakimoto T. Perception and signal transduction of cytokinins Annu. Rev. Plant Biol 2003 54:605–627.
[13] Jin S., Kanagaraj A., Verma D., Lange T., Daniell H. Release of hormones from conjugates: chloroplast expression of b-glucosidase results in elevated phytohormone levels associated with significant increase in biomass and protection from aphids or whiteflies conferred by sucrose esters Plant Physiol 2011 155, N 1:222–235.
[14] Pilon-Smits E., Ebskamp M., Paul M. J., Jeuken M., Weisbeek P. J., Smeekens S. Improved performance of transgenic fructan-accumulating tobacco under drought stress Plant Physiol 1995 107, N 1:125–130.
[15] Rook F., Corke F., Baier M., Holman R., May A. G., Bevan M. W. Impaired sucrose induction 1 encodes a conserved plant-specific protein that couples carbohydrate availability to gene expression and plant growth Plant J 2006 46, N 6:1045–1058.
[16] Patrick J. W., Botha F. C., Birch R. G. Metabolic engineering of sugars and simple sugar derivatives in plants Plant Biotechnol. J 2013 11, N 2:142–156.
[17] Coleman H. D., Beamish L., Reid A., Park J. Y., Mansfield S. D. Altered sucrose metabolism impacts plant biomass production and flower development Transgenic Res 2010 19, N 2 P. 269–283.
[18] Sun F., Suen P. K., Zhang Y., Liang C., Carrie C., Whelan J., Ward J. L., Hawkins N. D., Jiang L., Lim B. L. A dual-targeted purple acid phosphatase in Arabidopsis thaliana moderates carbon metabolism and its overexpression leads to faster plant growth and higher seed yield New Phytol 2012 194, N 1:206–219.
[19] Ral J.-P., Bowerman A. F., Li Z., Sirault X., Furbank R., Pritchard J. R., Bloemsma M., Cavanagh C. R., Howitt C. A., Morell M. K. Down-regulation of Glucan, Water-Dikinase activity in wheat endosperm increases vegetative biomass and yield Plant Biotechnol. J 2012 10, N 7:871–882.
[20] Jiang Y., Guo W., Zhu H., Ruan Y.-L., Zhang T. Overexpression of GhSusA1 increases plant biomass and improves cotton fiber yield and quality Plant Biotechnol. J 2012 10, N 3:301–312.
[21] Dayan J., Schwarzkopf M., Avni A., Aloni R. Enhancing plant growth and fiber production by silencing GA 2-oxidase Plant Biotechnol. J 2010 8, N 4:425–435.
[22] Gou J., Ma C., Kadmiel M., Gai Y., Strauss S., Jiang X., Busov V. Tissue-specific expression of Populus C19 GA 2-oxidases differentially regulate aboveand below-ground biomass growth through control of bioactive GA concentrations New Phytol 2011 192, N 3:626–639.
[23] Wang B., Zhou X., Xu F., Gao J. Ectopic expression of a Chinese cabbage BrARGOS gene in Arabidopsis increases organ size Transgenic Res 2010 19, N 3:461–472.
[24] Kuluev B. R., Knyazev A. V., Iljassowa A. A., Chemeris A. V. Constitutive expression of the ARGOS gene driven by dahlia mosaic virus promoter in tobacco plants Russ. J. Plant Physiol 2011 58, N 3:507–515.
[25] Atkins C. A., Emery R. J., Smith P. M. Consequences of transforming narrow leafed lupin (Lupinus angustifolius [L.]) with an ipt gene under control of a flower-specific promoter Transgenic Res 2011 20, N 6:1321–1332.
[26] Guo J.-C., Duan R.-J., Hu X.-W., Li K.-M., Fu S.-P. Isopentenyl transferase gene (ipt) downstream transcriptionally fused with gene expression improves the growth of transgenic plants Transgenic Res 2010 19, N 2:197–209.
[27] Trehub M. S., Sakhno L. O. Growth features of the transgenic Brassica napus plants expressing cytochrome P450SCC cyp11A1 gene under in vitro osmotic stress conditions Achievements and Problems of Genetics, Breeding and Biotechnology / Ed. V. A. Kunah Kyiv: Logos, 2012 Vol. 4:623–628.
[28] Chung B. C., Matteson K. J., Voutilainen R., Mohandas T. K., Miller W. L. Human cholesterol side-chain cleavage enzyme, P450scc: cDNA cloning, assignment of the gene to chromosome 15, and expression in the placenta Proc. Natl Acad. Sci. USA 1986 83, N 23:8962–8966.
[29] Park S., Back K. Melatonin promotes seminal root elongation and root growth in transgenic rice after germination J. Pineal Res 2012 53, N 4:385–389.
[30] Posmyk M. M., Kuran H., Marciniak K., Janas K. M. Presowing seed treatment with melatonin protects red cabbage seedlings against toxic copper ion concentrations J. Pineal Res 2008 45, N 1:24–31.
[31] Tan D.-X., Hardeland R., Manchester L. C., Korkmaz A., Ma S., Rosales-Corral S., Reiter R. J. Functional roles of melatonin in plants, and perspectives in nutritional and agricultural science J. Exp. Bot 2012 63, N 2:577–597.
[32] Aguado-Santacruz G. A., Rascon-Cruz Q., Moreno-Gomez B., Guevara-Gonzalez R. G., Guevara-Olvera L., Jimenez-Bremont J. F., Arevalo-Gallegos S., Garcia-Moya E. Genetic transformation of blue grama grass with the rolA gene from Agrobacterium rhizogenes: regeneration of transgenic plants involves a «hairy embryo» stage In Vitro Cell. Dev. Biol. Plant 2009 45, N 6 P. 681–692.
[33] Tenea G. N., Calin A., Gavrila L., Cucu N. Manipulation of root biomass and biosynthetic potential of Glycyrrhiza glabra L. plants by Agrobacterium rhizogenes mediated transformation Rom. Biotechnol. Lett 2008 13, N 5:3922–3932.
[34] Raschke M., Boycheva S., Crevecoeur M., Nunes-Nesi A., Witt S., Fernie A. R., Amrhein N., Fitzpatrick T. B. Enhanced levels of vitamin B6 increase aerial organ size and positively affect stress tolerance in Arabidopsis Plant J 2011 66, N 3:414–432.
[35] Bomer M., Uhrig J. F., Jach G., Muller K. J. Increased vegetative development and sturdiness of storekeeper-transgenic tobacco Cent. Eur. J. Biol 2011 6, N 3:342–351.
[36] Manabe Y., Tinker N., Colville A., Miki B. CSR1, the sole target of imidazolinone herbicide in Arabidopsis thaliana Plant Cell Physiol 2007 48, N 9:1340–1358.
[37] Schnell J., Labbe H., Kovinich N., Manabe Y., Miki B. Comparability of imazapyr-resistant Arabidopsis created by transgenesis and mutagenesis Transgenic Res 2012 21, N 6:1255–1264.
[38] Spivak S. G., Berdichevets I. N., Yarmolinsky D. G., Maneshina T. V., Shpakovski G. V., Kartel N. A. Construction and characteristics of transgenic tobacco Nicotiana tabacum L. plants expressing CYP11A1 cDNA encoding cytochrome P450SCC Russ. J. Genet 2009 45, N 9:1067–1073.
[39] Sakhno L. A., Gocheva E. A., Komarnitskii I. K., Kuchuk N. V. Stable expression of the promoterless bar gene in transformed rapeseed plants Cytol. Genet 2008 42, N 1:16–22.
[40] Morinaka Y., Sakamoto T., Inukai Y., Agetsuma M., Kitano H., Ashikari M., Matsuoka M. Morphological alteration caused by brassinosteroid insensitivity increases the biomass and grain production of rice Plant Physiol 2006 141, N 3:924–931.
[41] Karaba A., Dixit S., Greco R., Aharoni A., Trijatmiko K. R., Marsch-Martinez N., Krishnan A., Nataraja K. N., Udayakumar M., Pereira A. Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene Proc. Natl Acad. Sci. USA 2007 104, N 39:15270– 15275.
[42] Sivamani E., Bahieldin1 A., Wraith J. M., Al-Niemi T., Dyer W. E., Ho T. D., Qu R. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene Plant Sci 2000 155, N 1:1–9.
[43] Fu C., Sunkar R., Zhou C., Shen H., Zhang Ji-Yi, Matts J., Wolf J., Mann D. G., Stewart C. N. Jr., Tang Y., Wang Z. Y. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production Plant Biotechol. J 2012 10, N 4:443–452.
[44] Kumar A., Li C., Portis A. R. Jr. Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures Photosynth. Res 2009 100, N 3:143–153.
[45] Fouad W. M., Altpeter F. Transplastomic expression of bacterial l-aspartate-alpha-decarboxylase enhances photosynthesis and biomass production in response to high temperature stress Transgenic Res 2009 18, N 5:707–718.
[46] Good A. G., Jonson S. J., de Pauw M., Carroll R. T., Savidov N., Vidmar J., Lu Z., Taylor G., Stroeher V. Engineering nitrogen use efficiency with alanine aminotransferase Can. J. Bot 2007 85, N 3:252–262.
[47] Lu J., Gao X., Dong Z., Yi J., An L. Improved phosphorus acquisition by tobacco through transgenic expression of mitochondrial malate dehydrogenase from Penicillium oxalicum Plant Cell Rep 2012 31, N 1:49–56.
[48] Wang Q., Yi Q., Hu Q., Zhao Y., Nian H., Li K., Yu Y., Izui K., Chen L. Simultaneous overexpression of citrate synthase and phosphoenolpyruvate carboxylase in leaves augments citrate exclusion and Al resistance in transgenic tobacco Plant Mol. Biol. Rep 2012 30, N 4:992–1005.
[49] Ma X. F., Tudor S., Butler T., Ge Y., Xi Y., Bouton J., Harrison M., Wang Z. Y. Transgenic expression of phytase and acid phosphatase genes in alfalfa (Medicago sativa) leads to improved phosphate uptake in natural soils Mol. Breed 2012 30, N 1 P. 377–391.
[50] Guo W., Zhao J., Li X., Qin L., Yan X., Liao H. A soybean b-expansin gene GmEXPB2 intrinsically involved in root system architecture responses to abiotic stresses Plant J 2011 66, N 3 P. 541–552.
[51] Liang C. Y., Chen Z. J., Yao Z. F., Tian J., Liao H. Characterization of two putative protein phosphatase genes and their involvement in phosphorus efficiency in Phaseolus vulgaris J. Integr. Plant Biol 2012 54, N 6:400–411.
[52] Zamani K., Sabet M. S., Lohrasebi T., Mousavi A., Malboobi M. A. Improved phosphate metabolism and biomass production by overexpression of AtPAP18 in tobacco Biologia 2012 67, N 4:713–720.
[53] Farwell A. J., Vesely S., Nero V., Rodriguez H., McCormack K., Shah S., Dixon D. G., Glick B. R. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site Environ. Pollut 2007 147, N 3:540–545.
[54] Liu M., Li D., Wang Z., Meng F., Li Y., Wu X., Teng W., Han Y., Li W. Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size Plant Cell Tissue Organ. Cult 2012 111, N 3:277–289.
[55] McKersie B. D., Bowley S. R., Jones K. S. Winter survival of transgenic alfalfa overexpressing superoxide dismutase Plant Physiol 1999 119, N 3:839–847.
[56] Gusta L. V., Benning N. T., Wu G., Luo X., Liu X., Gusta M. L., McHughen A. Superoxide dismutase: an all-purpose gene for agri-biotechnology Mol. Breed 2009 24, N 2:103–115.
[57] Sakhno L. O. Seed germination features of canola plants expressing mammalian cytochrome P450SCC cyp11A1 gene The Bulletin of Vavilov Society of Geneticists and Breeders of Ukraine 2011 9, N 2:253–259.
[58] Kim Y. S., Kim I. S., Bae M. J., Choe Y. H., Kim Y. H., Park H. M., Kang H. G., Yoon H. S. Homologous expression of cytosolic dehydroascorbate reductase increases grain yield and biomass under paddy field conditions in transgenic rice (Oryza sativa L. japonica) Planta 2013 237, N 6:1613–1625.
[59] Garchery C., Gest N., Do P. T., Alhagdow M., Baldet P., Menard G., Rothan C., Massot C., Gautier H., Aarrouf J., Fernie A. R., Stevens R. A diminution in ascorbate oxidase activity affects carbon allocation and improves yield in tomato under water deficit Plant Cell Environ 2013 36, N 1:159–175.
[60] Zhang H., Dong H., Li W., Sun Y., Chen S., Kong X. Increased glycine betaine synthesis and salinity tolerance in AhCMO transgenic cotton lines Mol. Breed 2009 23, N 2:289–298.
[61] He C., Zhang W., Gao Q., Yang A., Hu X., Zhang. J. Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings Euphytica 2011 177, N 2:151–167.
[62] Bae M.-J., Kim Y.-S., Kim I.-S., Choe Y.-H., Lee E.-J., Kim Y.-H., Park H.-M., Yoon H.-S. Transgenic rice overexpressing the Brassica juncea gamma-glutamylcysteine synthetase gene enhances tolerance to abiotic stress and improves grain yield under paddy field conditions Mol. Breed 2013 31, N 4:931–945.
[63] Ben-Saad R., Ben-Ramdhan W., Zouari N., Azaza J., Mieulet D., Guiderdoni E., Ellouz R., Hassairi A. Marker-free transgenic durum wheat cv. Karim expressing the AlSAP gene exhibits a high level of tolerance to salinity and dehydration stresses Mol. Breed 2012 30, N 1:521–533.
[64] Qin H., Gu Q., Zhang J., Sun L., Kuppu S., Zhang Y., Burow M., Payton P., Blumwald E., Zhang H. Regulated expression of an isopentenyltransferase gene (IPT) in peanut significantly improves drought tolerance and increases yield under field conditions Plant Cell Physiol 2011 52, N 11:1904–1914.
[65] AbuQamar S., Luo H., Laluk K., Mickelbart M. V., Mengiste T. Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor Plant J 2009 58, N 2:347–360.
[66] Zhu B., Su J., Chang M., Verma D. P. S., Fan Y.-L., Wu R. Overexpression of a D1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to waterand salt-stress in transgenic rice Plant Sci 1998 139, N 1:41–48.
[67] Bhatnagar-Mathur P., Vadez V., Devi M. J., Lavanya M., Vani G., Sharma K. K. Genetic engineering of chickpea (Cicer arietinum L.) with the P5CSF129A gene for osmoregulation with implications on drought tolerance Mol. Breed 2009 23, N 4 P. 591–606.
[68] van Altvorst A. C., Bino R. J., van Dijk A. J., Lamers A. M. J., Lindhout W. H., van der Mark F., Dons J. J. M. Effects of the introduction of Agrobacterium rhizogenes rol genes on tomato plant and flower development Plant Sci 1992 83, N 1:77–85.
[69] Shen Q., Jiang M., Li H., Che L. L., Yang Z. M. Expression of a Brassica napus heme oxygenase confers plant tolerance to mercury toxicity Plant Cell Environ 2011 34, N 5:752–763.
[70] Liu H., Wang Q., Yu M., Zhang Y., Wu Y., Zhang H. Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots Plant Cell Environ 2008 31, N 9:1325–1334.