Biopolym. Cell. 2013; 29(5):395-401.
Геноміка, транскриптоміка та протеоміка
Генетичні та епігенетичні зміни в експресії генів GPX1 і GPX3 за світлоклітинної карциноми нирки людини
1Руденко Є. Є., 1Геращенко Г. В., 1Лапська Ю. В., 1Богатирьова О. О., 2Возіанов С. О., 2Згонник Ю. М., 1Кашуба В. І.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680
  2. Державна установа «Інститут урології Національної академії медичних наук України»
    вул. Ю. Коцюбинського, 9-А, Київ, Україна, 04053

Abstract

Мета. Знайти можливі діагностичні і прогностичні маркери канцерогенезу. Методи. Аналіз даних SAGE і мікрочіпів, кількісна ПЛР (Q-PCR), бісульфітне секвенування, метилспецифічна ПЛР. Результати. Біоінформатичним аналізом баз даних SAGE і мікрочіпів виявлено, що гени, які кодують глутатіонпероксидазу 1 і 3 (GPX1 і GPX3), мають низький рівень експресії у тканинах раку нирок. Дані Q-PCR щодо відносної експресії генів GPX1 і GPX3 підтвердили, що зазначені гени часто інактивовані у світлоклітинній карциномі нирки (ccRCC). Кореляції між рівнем експресії і метилюванням промотoру у жодному разі не знайдено. Проте встановлено, що алель з п’ятьма ALA-повторами в N-кінцевій ділянці GPX1 є найчастіше повторюваним поліморфним варіантом у пацієнтів з ccRCC. Висновки. Наші дані підтверджують гіпотезу, що гени GPX1 і GPX3 залучені до процесу канцерогенезу ccRCC і можуть бути кандидатами на роль генів – супресорів пухлин (TSGs, tumor suppressor genes) при раку нирок.
Keywords: карцинома нирки, генетична та епігенетична регуляція, хромосома 3, кількісна ПЛР у реальному часі, рівень метилювання

References

[1] Jemal A., Bray F., Center M. M., Ferlay J., Ward E., Forman D. Global cancer statistics CA Cancer J. Clin 2011 61, N 2:69–90.
[2] Cheville J. C., Lohse C. M., Zincke H., Weaver A. L., Blute M. L. Comparisons of outcome and prognostic features among histologic subtypes of renal cell carcinoma Am. J. Surg. Pathol 2003 27, N 5:612–624.
[3] Awakura Y., Nakamura E., Takahashi T., Kotani H., Mikami Y., Kadowaki T., Myoumoto A., Akiyama H., Ito N., Kamoto T., Manabe T., Nobumasa H., Tsujimoto G., Ogawa O. Microarray-ba sed identification of CUB-domain containing protein 1 as a potential prognostic marker in conventional renal cell carcinoma J. Cancer Res. Clin. Oncol 2008 134, N 12:1363–1369.
[4] Gordiyuk V. V., Kondratov A. G., Gerashchenko G. V., Kashuba V. I. Novel epigenetic markers of early epithelial tumor growth and prognosis Biopolym. Cell 2013 29, N 3:215–220.
[5] Berger A. H., Knudson A. G., Pandolfi P. P. A continuum model for tumour suppression Nature 2011 476, N 7359:163–169.
[6] Rew D. A. DNA microarray technology in cancer research Eur. J. Surg. Oncol 2001 27, N 5:504–508.
[7] Motamed N., Karimizadeh E. Serial analysis of gene expression and its applications Genetics in the 3rd millennium 2010 8, N 2:2037–2042.
[8] Reiner A., Yekutieli D., Benjamini Y. Identifying diferentially expressed genes using false discovery rate controlling procedures Bioinformatics 2003 19, N 3:368–375.
[9] Speissel B., Beahrs O. H., Hermanek P., Hutter R. V. P., Scheibe O. TNM atlas: illustrated guide to the TNM/pTNM classification of malignant tumours Berlin; New York: Springer, 1989 343 p.
[10] Travis W. D., Coby T. V., Corrin B., Shimosato Y., Brambilla E. World Health Organization International Histological Classification of Tumours; Histological typing of lung and pleural tumours Berlin: Springer, 1999 156 p.
[11] Jung M., Ramankulov A., Roigas J., Johannsen M., Ringsdorf M., Kristiansen G., Jung K. In search of suitable reference genes for gene expression studies of human renal cell carcinoma by real-time PCR BMC Mol. Biol 2007 8:47.
[12] Pfaffl M. W. A new mathematical model for relative quantification in real-time RT-PCR Nucleic Acids Res 2001 29, N 9 e45.
[13] Gerashchenko G. V., Bogatyrova O. O., Rudenko E. E., Kondratov A. G., Gordiyuk V. V., Zgonnyk Y. M., Vozianov O. F., Pavlova T. V., Zabarovsky E. R., Rynditch A. V., Kashuba V. I. Genetic and epigenetic changes of NKIRAS1 gene in human renal cell carcinomas Exp. Oncol 2010 32, N 2:71–75.
[14] Murawaki Y., Tsuchiya H., Kanbe T., Harada K., Yashima K., Nozaka K., Tanida O., Kohno M., Mukoyama T., Nishimuki E., Kojo H., Matsura T., Takahashi K., Osaki M., Ito H., Yodoi J., Murawaki Y., Shiota G. Aberrant expression of selenoproteins in the progression of colorectal cancer Cancer Lett 2008 259, N 2:218–230.
[15] Pawlowicz Z., Zachara B. A, Trafikowska U., Maciag A., Marchaluk E., Nowicki A. Blood selenium concentrations and glutathione peroxidase activities in patients with breast cancer and with advanced gastrointestinal cancer J. Trace Elem. Electrolytes Health Dis 1991 5, N 4:275–277.
[16] Yu Y. P., Yu G., Tseng G., Cieply K., Nelson J., Defrances M., Zarnegar R., Michalopoulos G., Luo J. H. Glutathione peroxidase 3, deleted or methylated in prostate cancer, suppresses prostate cancer growth and metastasis Cancer Res 2007 67, N 7:8043–8050.
[17] Schmutzler C., Mentrup B., Schomburg L., Hoang-Vu C., Herzog V., Kohrle J. Selenoproteins of the thyroid gland: expression, localization and possible function of glutathione peroxidase 3 Biol. Chem 2007 388, N 10:1053–1059.
[18] Hasegawa Y., Takano T., Miyauchi A., Matsuzuka F., Yoshida H. Y., Kuma K., Amino N. Decreased expression of glutathione peroxidase mRNA in thyroid anaplastic carcinoma Cancer Lett 2002 182, N 1:69–74.
[19] Karlsson S., Klinga-Levan K. Expression analysis of human endometrial adenocarcinoma in an inbred rat model Adv. Exp. Med. Biol 2008 617:503–509.
[20] Brigelius-Flohe R., Kipp A. Glutathione peroxidases in different stages of carcinogenesis Biochim. Biophys. Acta 2009 1790, N 11:1555–1568.
[21] Cowan D. B., Weisel R. D., Williams W. G., Mickle D. A. Identification of oxygen responsive elements in the 5'-flanking region of the human glutathione peroxidase gene J. Biol. Chem 1993 268, N 36:26904–26910.
[22] Merante F., Altamentova S. M., Mickle D. A., Weisel R. D., Thatcher B. J., Martin B. M., Marshall J. G., Tumiati L. C., Cowan D. B., Li R. K. The characterization and purification of a human transcription factor modulating the glutathione peroxidase gene in response to oxygen tension Mol. Cell Biochem 2002 229, N 1–2:73–83.
[23] Jornot L., Junod A. F. Hyperoxia, unlike phorbol ester, induces glutathione peroxidase through a protein kinase C-independent mechanism Biochem. J 1997 326, Pt 1:117–123.
[24] Bierl C., Voetsch B., Jin R. C., Handy D. E., Loscalzo J. Determinants of human plasma glutathione peroxidase (GPx-3) expression J. Biol. Chem 2004 279, N 26:26839–26845.
[25] Kulak M. V., Cyr A. R., Woodfield G. W., Bogachek M., Spanheimer P. M., Li T., Price D. H., Domann F. E., Weigel R. J. Transcriptional regulation of the GPX1 gene by TFAP2C and aberrant CpG methylation in human breast cancer Oncogene 2013 32, N 34:4043-51.
[26] Hu Y. J., Diamond A. M. Role of glutathione peroxidase 1 in breast cancer: loss of heterozygosity and allelic differences in the response to selenium Cancer Res 2003 63, N 12:3347– 3351.