Biopolym. Cell. 2013; 29(5):389-394.
Структура та функції біополімерів
мРНК, що кодують A1 і A2 ізоформи фактора трансляції eEF1A, мають різний час напівжиття, у той час як білки А1 і А2 рівною мірою стабільні в клітинах MCF7
1Вісловух А. А., 1Гралєвська Н. Л., 1Наумовець М. Г., 1Негруцький Б. С., 1Єльська А. В.
  1. Державна ключова лабораторія молекулярної і клітинної біології
    Інститут молекулярної біології і генетики НАН України
    вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Евкаріотний фактор елонгації трансляції (eEF1A) існує у вигляді двох гомологічних на 98 % ізоформ eEF1A1 і eEF1A2, які є тканиноспецифічними, відрізняються за представленістю в онтогенезі та по-різному пов’язані з апоптозом і канцерогенезом. Згідно з попередніми даними, eEF1A2 має підвищений рівень експресії у деяких пухлинах, а eEF1A1 – у пошкоджених м’язах. Щоб зрозуміти механізм, за яким змінюється відносна кількість ізоформ, ми дослідили стабільність білків та їхніх мРНК у клітинах раку людини. Мета. Оцінити час напівжиття ізоформ eEF1A на рівні мРНК і білка в клітинах раку людини. Методи. Для вимірювання стабільності мРНК використано техніку блокування транскрипції з подальшим аналізом рівня мРНК із застосуванням кількісної ПЛР. Для визначення швидкості розпаду білка трансляцію блокували циклогексимідом, подальші зміни рівня білка виявляли методом Вестерн-блоту. Результати. За підрахунками, стабільність білка зберігалася протягом 72 год у разі eEF1A1 та 95 год – у разі eEF1A2. Значення часу напівжиття EEF1A1 і EEF1A2 мРНК становлять відповідно 3 і 60 год. Висновки. Незважаючи на подібні значення стабільності білка, ізоформи eEF1A значно відрізняються за часом напівжиття їхніх мРНК, внаслідок чого можна припустити, що контроль стабільності мРНК є одним з основних механізмів регуляції експресії eEF1A1/ A2 в клітинах раку молочної залози MCF7.
Keywords: eEF1A1, eEF1A2, евкаріотний фактор елонгації трансляції 1А, час напівжиття мРНК, час напівжиття білка

References

[1] Negrutskii B. S., El'skaya A. V. Eukaryotic translation elongation factor 1 alpha: structure, expression, functions, and possible role in aminoacyl-tRNA channeling Prog. Nucleic Acid Res. Mol. Biol 1998 60:47–78.
[2] Newbery H. J., Loh D. H., O'Donoghue J. E., Tomlinson V. A., Chau Y. Y., Boyd J. A., Bergmann J. H., Brownstein D., Abbott C. M. Translation elongation factor eEF1A2 is essential for post-weaning survival in mice J. Biol. Chem 2007 282, N 39 P. 28951–28959.
[3] Kahns S., Lund A., Kristensen P., Knudsen C. R., Clark B. F., Cavallius J., Merrick W. C. The elongation factor 1 A-2 isoform from rabbit: cloning of the cDNA and characterization of the protein Nucleic Acids Res 1998 26, N 8:1884–1890.
[4] Chen E., Proestou G., Bourbeau D., Wang E. Rapid up-regulation of peptide elongation factor EF-1alpha protein levels is an immediate early event during oxidative stress-induced apoptosis Exp. Cell Res 2000 259, N 1:140–148.
[5] Duttaroy A., Bourbeau D., Wang X. L., Wang E. Apoptosis rate can be accelerated or decelerated by overexpression or reduction of the level of elongation factor-1 alpha Exp. Cell Res 1998 238, N 1:168–176.
[6] Ruest L. B., Marcotte R., Wang E. Peptide elongation factor eEF1A-2/S1 expression in cultured differentiated myotubes and its protective effect against caspase-3-mediated apoptosis J. Biol. Chem 2002 277, N 7:5418–5425.
[7] Anand N., Murthy S., Amann G., Wernick M., Porter L. A., Cukier I. H., Collins C., Gray J. W., Diebold J., Demetrick D. J., Lee J. M. Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer Nat. Genet 2002 31, N 3:301–305.
[8] Lee M. H., Surh Y. J. eEF1A2 as a putative oncogene Ann. New York Acad. Sci 2009 1171:87–93.
[9] Tomlinson V. A., Newbery H. J., Wray N. R., Jackson J., Larionov A., Miller W. R., Dixon J. M., Abbott C. M. Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours BMC Cancer 2005 5:113.
[10] Bosutti A., Scaggiante B., Grassi G., Guarnieri G., Biolo G. Overexpression of the elongation factor 1A1 relates to muscle proteolysis and proapoptotic p66(ShcA) gene transcription in hypercatabolic trauma patients Metabolism 2007 56, N 12 P. 1629–1634.
[11] Tomlinson V. A., Newbery H. J., Bergmann J. H., Boyd J., Scott D., Wray N. R., Sellar G. C., Gabra H., Graham A., Williams A. R., Abbott C. M. Expression of eEF1A2 is associated with clear cell histology in ovarian carcinomas: overexpression of the gene is not dependent on modifications at the EEF1A2 locus Br. J. Cancer 2007 96, N 10:1613–1620.
[12] Zhao S., Fernald R. D. Comprehensive algorithm for quantitative real-time polymerase chain reaction J. Comput. Biol 2005 12, N 8:1047–1064.
[13] Goldberg A. L. Protein degradation and protection against misfolded or damaged proteins Nature 2003 426, N 6968 P. 895–899.
[14] Cambridge S. B., Gnad F., Nguyen C., Bermejo J. L., Kruger M., Mann M. Systems-wide proteomic analysis in mammalian cells reveals conserved, functional protein turnover J. Proteome Res 2011 10, N 12:5275–5284.
[15] Schwanhausser B., Busse D., Li N., Dittmar G., Schuchhardt J., Wolf J., Chen W., Selbach M. Global quantification of mammalian gene expression control Nature 2011 473, N 7347 P. 337–342.
[16] Boisvert F. M., Ahmad Y., Gierlinski M., Charriere F., Lamont D., Scott M., Barton G., Lamond A. I. A quantitative spatial proteomics analysis of proteome turnover in human cells Mol. Cell Proteomics 2012 11, N 3 M111.011429. ]
[17] Kolesanova E. F., Farafonova T. E., Aleshina E. Y., Pyndyk N. V., Veremieva M. V., Novosylnaya A. V., Kovalenko M. I., Shalak V. F., Negrutskii B. S. Preparation of monospecific antibodies against isoform 2 of translation elongation factor 1A (eEF1 A2) Biochemistry (Moscow) Suppl Series B: Biomedical Chemistry 2013 7, N 1:62–69.
[18] Obrig T. G., Culp W. J., McKeehan W. L., Hardesty B. The mechanism by which cycloheximide and related glutarimide antibiotics inhibit peptide synthesis on reticulocyte ribosomes J. Biol. Chem 1971 246, N 1:174–181.
[19] Zhou P. Determining protein half-lives Methods Mol. Biol 2004 284:67–77.
[20] Vislovukh A. A., Naumovets M. G., Kovalenko M. I., Groisman R. S., Groisman I. S., Negrutskii B. S., El'skaya A. V. Isoforms of elongation factor eEF1A may be differently regulated at posttranscriptional level in breast cancer progression Biopolym. Cell 2013 29, N 1:55–63.
[21] Kim D. W., Uetsuki T., Kaziro Y., Yamaguchi N., Sugano S. Use of the human elongation factor 1 alpha promoter as a versatile and efficient expression system Gene 1990 91, N 2:217–223.
[22] Shibui-Nihei A., Ohmori Y., Yoshida K., Imai J., Oosuga I., Iidaka M., Suzuki Y., Mizushima-Sugano J., Yoshitomo-Nakagawa K., Sugano S. The 5' terminal oligopyrimidine tract of human elongation factor 1A-1 gene functions as a transcriptional initiator and produces a variable number of Us at the transcriptional level Gene 2003 311:137–145.
[23] Datu A. K., Bag J. Enhanced translation of mRNAs encoding proteins involved in mRNA translation during recovery from heat shock PLoS One 2013 8, N 5 e64171.
[24] Knudsen S. M., Frydenberg J., Clark B. F., Leffers H. Tissuedependent variation in the expression of elongation factor-1 alpha isoforms: isolation and characterisation of a cDNA encoding a novel variant of human elongation-factor 1 alpha Eur. J. Biochem 1993 215, N 3:549–554.
[25] Vislovukh A., Kratassiouk G., Porto E., Gralievska N., Beldiman C., Pinna G., El'skaya A., Harel-Bellan A., Negrutskii B., Groisman I. Proto-oncogenic isoform A2 of eukaryotic translation elongation factor eEF1 is a target of miR-663 and miR-744 Br. J. Cancer 2013 108, N 11:2304–2311.
[26] Vislovukh A. A., Groisman I. S., El'skaya A. V., Negrutskii B. S., Polesskaya A. N. Transcriptional and post-transcriptional control of eEF1A2 expression during myoblast diffrerentiation Biopolym. Cell 2012 28, N 6:456–460.
[27] Schuman E. M., Dynes J. L., Steward O. Synaptic regulation of translation of dendritic mRNAs //J. Neurosci 2006 26, N 27 P. 7143–7146.
[28] Jung H., Yoon B. C., Holt C. E. Axonal mRNA localization and local protein synthesis in nervous system assembly, maintenance and repair Nat. Rev. Neurosci 2012 13, N 5:308–324.
[29] Grange J., Belly A., Dupas S., Trembleau A., Sadoul R., Goldberg Y. Specific interaction between Sam68 and neuronal mRNAs: implication for the activity-dependent biosynthesis of elongation factor eEF1A J. Neurosci. Res 2009 87, N 1:12–25.
[30] Hashimoto K., Ishima T. Neurite outgrowth mediated by translation elongation factor eEF1A1: a target for antiplatelet agent cilostazol PLoS One 2011 6, N 3 e17431.
[31] Tsokas P., Grace E. A., Chan P., Ma T., Sealfon S. C., Iyengar R., Landau E. M., Blitzer R. D. Local protein synthesis mediates a rapid increase in dendritic elongation factor 1A after induction of late long-term potentiation J. Neurosci 2005 25, N 24 P. 5833–5843.
[32] Swynghedauw B. Developmental and functional adaptation of contractile proteins in cardiac and skeletal muscles Physiol. Rev 1986 66, N 3:710–771.