Biopolym. Cell. 2013; 29(3):221-233.
Огляди
Від зворотної транскрипції до пухлин головного мозку людини
1Дмитренко В. В., 1Авдєєв С. С., 1Арешков П. О., 1Балинська О. В., 1Букрєєва Т. В., 1Степаненко О. А., 1Чаусовський Т. Й., 1Кавсан В. М.
  1. Інститут молекулярної біології і генетики НАН України
    Вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Наукові розробки відділу біосинтезу нуклеїнових кислот розпочато з вивчення зворотної транскриптази вірусу пташиного мієлобластозу (AMV). Протягом сімдесятих років минулого століття у відділі налагоджено виробництво AMV (декілька грамів на рік) та виділення зворотної транскриптази AMV, що дозволило розгорнути роботи з синтезу кДНК, клонування та вивчення структури і функції генів евкаріотів. Упродовж багаторічних досліджень було визначено будову генів інсуліну і родини інсуліноподібних факторів росту (IGF) лосося та їхніх транскриптів. Результати застосування двох сучасних методів – гібридизації мікрочіпів і SAGE – використано для ідентифікації генів, які диференційно експресуються в астроцитарних гліомах і нормальному головному мозку людини. Їхнє порівняння виявило обмежену кількість спільних генів, надекспресованих у гліобластомі. Визначені нами 105 диференційно експресованих генів, спільних для обох методів, можуть бути включені до переліку кандидатів для молекулярного типування гліобластом. Проведено перші експерименти з класифікації гліобластом на основі даних по експресії 20 генів із застосуванням штучної нейронної мережі, які показали, що профілі експресії зазначених генів для 224 зразків гліобластом і 74 зразків нормального головного мозку піддаються кластеризації згідно з картами Кохонена. Серед найекспресованіших у гліобластомі генів, які мають прогностичний і діагностичний потенціал, виявлено гени хітиназоподібних білків CHI3L1 і CHI3L2. Результати експериментів in vitro продемонстрували, що обидва білки – CHI3L1 і CHI3L2 – здатні ініціювати фосфорилювання кіназ ERK1/ERK2 і AKT, що спричиняє активацію сигнальних каскадів PI3K/AKT і MAPK/ERK1/2 в клітинах 293 ембріональної нирки людини, а також у клітинах U87MG і U373 гліобластоми людини. Ідентифіковано нову клітинну лінію людини 293_CHI3L1, яка стабільно продукує хітиназоподібний білок CHI3L1. Знайдено, що ці клітини мають прискорений ріст і можуть рости у м’якому агарі незалежно від прикріплення до поверхні, що є одним із найсуттєвіших показників пухлинної трансформації. Формування пухлин клітинами 293_CHI3L1 у щурів свідчить про те, що CHI3L1 є онкогеном, причетним до канцерогенезу. Експерименти in vitro засвідчили, що конститутивна експресія гена CHI3L1 сприяє хромосомній нестабільності у клітинах 293. Модальне число хромосом у клітинах 293_CHI3L1 відрізняється від такого хромосом у контрольних клітинах 293_pcDNA3.1, трансфікованих «порожнім» плазмідним вектором, і батьківських клітинах 293.
Keywords: зворотна транскриптаза, пухлини головного мозку, диференційна експресия генів, хітиназоподібні білки, онкоген CHI3L1

References

[1] Baltimor D. RNA-dependent DNA polymerase in virions of RNA tumour viruses Nature 1970 226, N 5252:1209–1211.
[2] Temin H. M., Mizutani S. RNA-dependent DNA polymerase in virions of Rous sarcoma virus Nature 1970 226, N 5252:1211–1213.
[3] Gershenson S. M. Phenomenon of insects polyhedrosis viruses latency J. General Biol. (Russia) 1961 22:32–41.
[4] Sakharova N. K., Ryndich A. V., Kavsan V. M., Goryunova L. E., Grechko V. V. mRNA of mouse plasmacytoma. Reverse transcription and translation in cell-free systems Mol. Biol. (Mosk) 1979 13, N 1:169–179.
[5] Staverskaia O. V., Dobrovol'skaia G. N., Kavsan V. M., Ishchenko I. D., Rynditch A. V. Isolation of reverse transcriptase of avian myeloblastosis virus in preparative amounts Ukr. Biokhim. Zh 1984 56, N 5:503–514.
[6] Rynditch AV, Sutugina LP, Kavsan VM, Telichuk SP, Kok IP. DNA-polymerase activity associated with Galleria mellonella L. nuclear polyhedrosis virus. Dopovidi Akad Nauk Ukr RSR. Ser B. 1975;(4):347-9.
[7] Kavsan V. M., Chumakov M. P., Fleer G. P., Rynditch A. V., Lukshina O. L. Comparative study of RNA-dependent DNA-polymerases (revertases) of avian myeloblastosis and visna viruses Dokl. Akad. Nauk SSSR 1976 230, N 1:227–229.
[8] Taliansky M. E., Boykiv S. V., Malyshenko S. I., Kavsan V. M., Atabekov J. G. A study of barley stripe mosaic virus (BSMV) genome. I. Determination of sequence homology between BSMV RNA species Mol. Gen. Genet 1979 175, N 1:89–92.
[9] Kavsan V. M., Rynditch A. V. Determination of poly(A)-sequences in RNA with the help of reverse transcription Dopovidi . Acad. Sci. Ukr. SSR 1976 N 7:630–632.
[10] Agranovsky A. A., Dolja V. V., Kavsan V. M., Atabekov I. G. Detection of polyadenilate sequences in RNA components of barley stripe mosaic virus Virology 1978 91, N 1:95–105.
[11] Kavsan V. M., Ryndich A. V., Lukshina O. L., Kok I. P. Graevskaya N. A., Samarina O. P., Baisar D., Georgiev G. P. DNA synthesis on the heterogeneous nuclear RNA template catalyzed by DNA polymerase of avian myeloblastosis virus Mol. Biol. (Mosk) 1975 9, N 5:768–774.
[12] Kavsan V. M., Rynditch A. V., Samarina O. P., Georgiev G. P. DNA-synthesis on giant nuclear RNA by AMV DNA polymerase Mol. Biol. Rep 1975 2, N 3:203–207.
[13] Ryndich A. V., Maniakov V. F., Mazaev A. G., Khan F., Khunger H. D. Electron microscopic study of the DNA products of reverse transcription Mol. Biol. (Mosk) 1979 13, N 2:337–346.
[14] Kavsan V. M., Rynditch A. V., Manjakov V. Ph. Synthesis and properties of DNA complementary to heterogeneous nuclear RNA Hoppe-Seyler's Z. Physiol. Chem 1979 360 P 1032–1033.
[15] Kavsan V. M., Rynditch A. V., Shved A. D. Mechanism of linear DNA circularisation: formation of «lasso»-like structures of premRNA DNA-copies Mol. Biol. Rep 1982 8, N 3:129–132.
[16] Kavsan V. M. Splicing. I. Splicing of tRNA, rRNA, and mRNA in organelles Mol. Biol. (Mosk) 1986 20, N 1:5–20.
[17] Kavsan V. M. Splicing. 2. Splicing of mRNA in the cell nucleus Mol. Biol. (Mosk) 1986 20, N 6:1451–1471.
[18] Lokhova I. A., Nevinsky G. A., Gorn V. V., Veniaminova A. G., Repkova M. V., Kavsan V. M., Rudenko N. K., Lavrik O. I. A comparison of the initiating abilities of riboand deoxyriboprimers in DNA polymerization catalyzed by AMV reverse transcriptase FEBS Lett 1990 274, N 1–2:156–158.
[19] Lokhova I. A., Nevinskii G. A., Bulychev N. A., Gorn V. V., Levina A. S., Rudenko N. K., Kavsan V. M., Lavrik O. I. The efficiency of the interaction of RNA-independent DNA-polymerase from avian myeloblastosis virus with oligothymidylate primers of various length Mol. Biol. (Mosk) 1989 24, N 2:396–407.
[20] Lokhova I. A., Nevinsky G. A., Godovikova T. S., Ivanova E. M., Koshkin A. A., Sergeev D. S., Frolova E. I., Rudenko N. K., Khomov V. V., Kavsan V. M., Zarytova V. F., Lavrik O. I. 5-Derivatives of oligonucleotides as primers of DNA polymerization catalyzed by AMV reverse transcriptase and Klenow fragment of DNA polymerase I FEBS Lett 1991 281, N 1–2:111–113.
[21] Kavsan V. M., Rudenko N. K., Shneider M. A., Kraevskii A. A., Beabealashvili R. Sh. Inhibition of the avian leukosis-sarcoma complex with 3'-azido-3'-deoxythymidine (AzT); a model for screening and evaluation of chemotherapeutic agents against retrovirus infections Dokl. Akad. Nauk SSSR 1987 296, N 6:1492–1497.
[22] Shneider M. A., Rudenko N. K., Kavsan V. M., Bibilashvili R. S., Kraevskii A. A. The effect of 3'-azido-2',3'-dideoxythymidine on experimental viral infections Mol. Biol. (Mosk) 1987 21, N 3:837–846.
[23] Kutateladze T. V., Kritzyn A. M., Florentiev V. L., Kavsan V. M., Chidgeavadze Z. G., Beabelashvilli R. S. 3'-hydroxymethyl 2'-deoxynucleoside 5'-triphosphates are inhibitors highly specific for reverse transcriptase FEBS Lett 1986 207, N 2:205–212.
[24] Grebenjuk V. A., Anoprienko O. V., Skorokhod A. S., Marichev I. L., Kavsan V. M. Genetic characterization of HIV-1 variants in Ukraine Biopolym. Cell 1998 14, N 4:277–285.
[25] Kashuba V. I., Zubak S. V., Lazurkevich Z. V., Rynditch A. V., Kavsan V. M. Structure of a new transformation-defective mutant of Rous sarcoma virus Dokl. Akad. Nauk SSSR 1989 304, N 1:137–140.
[26] Ryndich A. V., Kashuba V. I., Kavsan V. M., Zubak S. V., Hlozanek I. The family of env genes of avian retroviruses: molecular analysis of Rous sarcoma virus adapted to duck cells Mol. Biol. (Mosk) 1989 23, N 5:1355–1363.
[27] Ryndich A. V., Kashuba V. I., Kavsan V. M., Zubak S. V., Dostalova V., Glozhanek I Molecular basis of retrovirus adaptation: nucleotide sequence of Rous sarcom virus adapted to duck cells Genetika 1990 26, N 3:389–398.
[28] Rynditch A. V., Kavsan V. M. Generation of new avian sarcoma viruses Sov. Sci. Rev. Sect. D. Physicochem. Biol Yverdon: Harwood Acad. Publishers GmbH, 1994:1–97.
[29] Zolotukhin S. B., Ishchenko I. D., Staverskaia O. V., Ryndich A. V., Kavsan V. M. Synthesis and cloning of DNA, complementary to rabbit globin pre-mRNA Mol. Biol. (Mosk) 1982 16, N 1:47–54.
[30] Kavsan V. M., Zolotukhin S. B. Structure of human globin genes Mol. Biol. (Mosk) 1982 16, N 1:1–27.
[31] Kavsan V. M. Formation of globin gene families as a model of eukaryotic gene formation Mol. Biol. (Mosk) 1983 17, N 1:6–32.
[32] Zolotukhin S. B., Kavsan V. M. Globin-specific nuclear RNA of erythroid cells from the rabbit bone marrow Biopolym. Cell 1985 1, N 4:208–213.
[33] Ovchinnikov Yu. A., Sverdlov E. D., Tsarev S. A., Khodkova E. M., Monastyrskaya G. S. Cloning and the identification of the human leukocyte interferon gene using synthetic oligonucleotides as primers and probes Dokl. Akad. Nauk SSSR 1982 262, N 3:725–728.
[34] Green EJ, Berzin VM, Tsimanis AIu, Apsalon UR, Vishnevskii IuI, Iansone IV, Disher AV, Pudova NV, Smorodintsev AA, Iovlev VI, Stepanov AN, Feldmane GJ, Meldrais JA, Lozha VP, Kavsan VM, Efimov VA, Sverdlov ED, Eremin NA, Metelitsa DI. A novel human leukocyte interferon. Dokl. Akad. Nauk SSSR. 1983; 269(4): 4:986–90.
[35] Sorokin A. V., Petrenko O. I., Kavsan V. M., Kozlov Y. I., Debabov V. G., Zlochevskij M. L. Nucleotide sequence analysis of the cloned salmon preproinsulin cDNA Gene 1982 20, N 3:367–376.
[36] Kavsan V. M., Petrenko A. I., Ryndich A. V., Dobrovol'skaia G. N., Sova V. V. Synthesis, cloning and sequence determination of Siberian salmon preproinsulin cDNA Mol. Biol. (Mosk) 1983 17, N 1:42–53.
[37] Koval' A. P., Petrenko A. I., Dmitrenko V. V., Kavsan V. M. Nucleotide sequence of chum salmon preproinsulin gene Mol. Biol. (Mosk) 1989 23, N 2:473–480.
[38] Kavsan V. M., Koval A. P., Grebenjuk V. A., Chan S. J., Steiner D. F., Roberts C. T. Jr., LeRoith D. Structure of the chum salmon insulin like-growth factor I gene DNA Cell Biol 1994 12, N 8:729–737.
[39] Koval A., Kulik V., Duguay S., Plisetskaya E., Adamo M. L., Roberts C. T. Jr., Leroith D., Kavsan V. Characrerization of a salmon insulin-like growth factor I promoter DNA Cell Biol 1994 13, N 10:1057–1062.
[40] Kulik V. P., Kavsan V. M., van Schaik F. M., Nolten L. A., Steenbergh P. H., Sussenbach J. S. The promotor of the salmon insulin-like growth factor I gene is activated by hepatocyte nuclear factor 1 J. Biol. Chem 1995 270, N 3:1068–1073.
[41] Palamarchuk A. Y., Holthuizen P. E., Mueller W. E., Sussenbach J. S., Kavsan V. M. Organization and expression of the chum salmon insulin-like growth factor II gene FEBS Lett 1997 416, N 3:344–348.
[42] Palamarchuk A. Y., Kavsan V. M., Sussenbach J. S., Holthuizen P. E. The chum salmon IGF-II gene promoter is activated by hepatocyte nuclear factor 3beta FEBS Lett 1999 446, N 2–3:251–255.
[43] Palamarchuk A. Y., Kavsan V. M., Sussenbach J. S., Holthuizen P. E. The chum salmon insulin-like growth factor II promoter requires Sp1 for its activation by C/EBP beta Mol. Cell. Endocrinol 2001 172, N 1–2:57–67.
[44] Palamarchuk A., Gritsenko O., Holthuizen E., Sussenbach J., Caelers A., Reinecke M., Kavsan V. Complete nucleotide sequence of the chum salmon insuline-like growth factor II gene Gene 2002 295, N 2:223–230.
[45] Kashuba V. I., Kavsan V. M., Petrenko A. I., Dmitrenko V. V., Koval A. P. Allelic polymorphism of the salmon preproinsulin gene Mol. Biol. (Mosk) 1986 20, N 3:845–852.
[46] Kavsan V., Koval A., Petrenko O., Roberts C. T. Jr, LeRoith D. Two insulin genes are present in the salmon genome Biochem. Biophys. Res. Commun 1993 191, N 3:1373–1378.
[47] Kavsan V. M., Grebenjuk V. A., Koval A. P., Skorohod A. S., Roberts C. T. Jr., LeRoith D. Isolation of a second nonallelic insulin-like growth factor I gene from the salmon genome DNA Cell Biol 1994 13, N 5:555–559.
[48] Kavsan V. M., Koval A. P., Palamarchuk A. Ju. A growth hormone pseudogene in salmon genome Gene 1994 141, N 2:301–302.
[49] LeRoith D., Kavsan V. M., Koval A. P., Roberts C. T. Jr. Phylogeny of the insulin-like growth factors (IGFs) and receptors: a molecular approach Mol. Reprod. Dev 1993 35, N 4:337–338.
[50] Kavsan V. M. Determination of the complete nucleotide sequence of the human genome: projects and prospects Biopolym. Cell 1989 5, N 2:16–25.
[51] Dmitrenko V. V., Garifulin O. M., Smikodub A. I., Kavsan V. M. An analysis of human genome expression by using libraries of the cDNA from different organs Tsitol. Genet 1995 29, N 2:64–71.
[52] Dmitrenko V. V., Garifulin O. M., Shostak K. O., Smikodub A. I., Kavsan V. M. The characteristics of different types of mRNA expressed in the human brain Tsitol. Genet 1996 30, N 5:41–47.
[53] Dmitrenko V., Garifulin O., Kavsan V. Isolation and sequence analysis of the cDNA encoding subunit C of human CCAAT-binding transcription factor Gene 1997 197, N 1–2:161–163.
[54] Dmitrenko V. V., Shostak K. O., Garifulin O. M., Zozulya Y. A., Kavsan V. M. Changes of gene expression in human brain astrocytic tumors Exp. Oncol 1998 20: 191–197.
[55] Shostak K. O., Dmitrenko V. V., Garifulin O. M., Rozumenko V. D., Khomenko O. V., Zozulya Yu. A., Zehetner G., Kavsan V. M. Potential suppressor role of TSC-22 gene in human brain tumours Biopolym. Cell 2001 17, N 2:152–159.
[56] Garifulin O. M., Shostak K. O., Dmitrenko V. V., Rozumenko V. D., Khomenko O. V., Zozulya Yu. A., Zehetner G., Kavsan V. M. Increased expression of SOX-2 and HC gp-39 genes in astrocytic tumours Biopolym. Cell 2002 18, N 4:324–329.
[57] Zozulia Iu. A., Shostak E. A., Garifulin O. M., Rozumenko V. D., Khomenko A. V., Dmitrenko V. V., Kavsan V. M. Role gene expression changes in development of human brain gliomas Zh. Vopr. Neirokhir. Im. N. N. Burdenko 2002 2:43–49.
[58] Kavsan V., Shostak K., Dmitrenko V., Chausovskiy T., Zozulya Y., Demotes-Mainard J. Peculiarities of molecular events in human glial tumors revealed by serial analysis of gene expression (SAGE) Exp. Oncol 2004 26, N 3:196–204.
[59] Dmytrenko V. V., Boyko O. I., Shostak K. O., Symyrenko O. E., Bukreieva T. V., Rozumenko V. D., Malysheva T. A., Shamayev M. I., Zozulya Y. P., Kavsan V. M. Overexpression of genes at different stages of astrocytic glioma development Biopolym. Cell 2006 22, N 1:38–48.
[60] Cheng Y., Ng H. K., Ding M., Zhang S. F., Pang J. C., Lo K. W. Molecular analysis of microdissected de novo glioblastomas and paired astrocytic tumors J. Neuropathol. Exp. Neurol 1999 58, N 2:120–128.
[61] Zhang L., Zhou W., Velculescu V. E., Kern S. E., Hruban R. H., Hamilton S. R., Vogelstein B., Kinzler K. W. Gene expression profiles in normal and cancer cells Science 1997 276, N 5316:1268–1272.
[62] Kavsan V. M., Dmitrenko V. V., Shostak K. O., Bukreieva T. V., Vitak N. Y., Symyrenko O. E., Malisheva T. A., Shamayev M. I., Rozumenko V. D., Zozulya Y. A. Comparison of microarray and SAGE techniques in gene expression analysis of human glioblastoma Tsitol. Genet 2007 41, N 1:36–55.
[63] Rickman D. S., Bobek M. P., Misek D. E., Kuick R., Blaivas M., Kurnit D. M., Taylor J., Hanash S. M. Distinctive molecular profiles of high-grade and low-grade gliomas based on oligonucleotide microarray analysis Cancer Res 2001 61, N 18:6885–6891.
[64] Markert J. M., Fuller C. M., Gillespie G. Y., Bubien J. K., McLean L. A., Hong R. L., Lee K., Gullans S. R., Mapstone T. B., Benos D. J. Differential gene expression profiling in human brain tumors Physiol. Genomics 2001 5, N 1:21–33.
[65] van den Boom J., Wolter M., Kuick R., Misek D. E., Youkilis A. S., Wechsler D. S., Sommer C., Reifenberger G., Hanash S. M. Characterization of gene expression profiles associated with glioma progression using oligonucleotide-based microarray analysis and real-time reverse transcription-polymerase chain reaction Am. J. Pathol 2003 163, N 3:1033–1043.
[66] Bammler T., Beyer R. P., Bhattacharya S., Boorman G. A., Boyles A., Bradford B. U., Bumgarner R. E., Bushel P. R., Chaturvedi K., Choi D., Cunningham M. L., Deng S., Dressman H. K., Fannin R. D., Farin F. M., Freedman J. H., Fry R. C., Harper A., Humble M. C., Hurban P., Kavanagh T. J., Kaufmann W. K., Kerr K. F., Jing L., Lapidus J. A., Lasarev M. R., Li J., Li Y. J., Lobenhofer E. K., Lu X., Malek R. L., Milton S., Nagalla S. R, O'malley J. P., Palmer V. S., Pattee P., Paules R. S., Perou C. M., Phillips K., Qin L. X., Qiu Y., Quigley S. D., Rodland M., Rusyn I., Samson L. D., Schwartz D. A., Shi Y., Shin J. L., Sieber S. O., Slifer S., Speer M. C., Spencer P. S., Sproles D. I., Swenberg J. A., Suk W. A., Sullivan R. C., Tian R., Tennant R. W., Todd S. A., Tucker C. J., Van Houten B., Weis B. K., Xuan S., Zarbl H.; Members of the Toxicogenomics Research Consortium. Standardizing global gene expression analysis between laboratories and across platforms Nat. Methods 2005 2, N 5:351–356.
[67] Irizarry R. A., Warren D., Spencer F., Kim I. F., Biswal S., Frank B.C., Gabrielson E., Garcia J. G., Geoghegan J., Germino G., Griffin C., Hilmer S. C., Hoffman E., Jedlicka A. E., Kawasaki E., Martinez-Murillo F., Morsberger L., Lee H., Petersen D., Quackenbush J., Scott A., Wilson M., Yang Y., Ye S. Q., Yu W. Multiple-laboratory comparison of microarray platforms Nat. Methods 2005 2, N 5:345–350.
[68] Larkin J. E., Frank B. C., Gavras H., Sultana R., Quackenbush J. Independence and reproducibility across microarray platforms Nat. Methods 2005 2, N 5:337–344.
[69] Petersen D., Chandramouli G. V. R., Geoghegan J., Hilburn J., Paarlberg J., Kim C. H., Munroe D., Gangi L., Han J., Puri R., Staudt L., Weinstein J., Barrett J. C., Green J., Kawasaki E. S. Three microarray platforms: an analysis of their concordance in profiling gene expression BMC Genomics 2005 6:63.
[70] Lal A., Lash A. E., Altschul S. F., Velculescu V., Zhang L., McLendon R. E., Marra M. A., Prange C., Morin P. J., Polyak K., Papadopoulos N., Vogelstein B., Kinzler K. W., Strausberg R. L, Riggins G. J. A public database for gene expression in human cancers Cancer Res 1999–59, N 21:5403–5407.
[71] Loging W. T., Lal A., Siu I. M., Loney T. L., Wikstrand C. J., Marra M. A., Prange C., Bigner D. D., Strausberg R. L., Riggins G. J. Identifying potential tumor markers and antigens by database mining and rapid expression screening Genome Res 2000 10, N 9:1393–1402.
[72] Boon K., Edwards J. B., Eberhart C. G., Riggins G. J. Identification of astrocytoma associated genes including cell surface markers BMC Cancer 2004 4:39.
[73] Madden S. L., Cook B. P., Nacht M., Weber W. D., Callahan M. R., Jiang Y., Dufault M. R., Zhang X., Zhang W., Walter-Yohrling J., Rouleau C., Akmaev V. R., Wang C. J., Cao X., St Martin T. B., Roberts B. L., Teicher B. A., Klinger K. W., Stan R. V., Lucey B., Carson-Walter E. B., Laterra J., Walter K. A. Vascular gene expression in nonneoplastic and malignant brain Am. J. Pathol 2004 165, N 2:601–608.
[74] Dmitrenko V. V., Kavsan V. M., Boyko O. I., Rymar V. I., Stepanenko A. A., Balynska O. V., Malysheva, T. A., Rozumenko V. D., Zozulya Y. P. Expression of genes belonging to the IGF-system in glial tumors Tsitol. Genet 2011 45, N 5:41–57.
[75] Trojan J., Cloix J. F., Ardourel M. Y., Chatel M., Anthony D. D. Insulin-like growth factor type I biology and targeting in malignant gliomas Neuroscience 2007 145, N 3:795–811.
[76] Soroceanu L., Kharbanda S., Chen R., Soriano R. H., Aldape K., Misra A., Zha J., Forrest W. F., Nigro J. M., Modrusan Z., Feuerstein B. G., Phillips H. S. Identification of IGF2 signaling through phosphoinositide-3-kinase regulatory subunit 3 as a growth-promoting axis in glioblastoma Proc. Natl Acad. Sci. USA 2007 104, N 9:3466–3471.
[77] Mohan S., Baylink D. J. IGF-binding proteins are multifunctional and act via IGF-dependent and -independent mechanisms J. Endocrinol 2002 175, N 1:19–31.
[78] Shostak K., Labunskyy V., Dmitrenko V., Malisheva T., Shamayev M., Rozumenko V., Zozulya Y., Zehetner G., Kavsan V. HC gp-39 gene is upregulated in glioblastomas Cancer Lett 2003 198, N 2:203–210.
[79] Recklies A. D., White C., Ling H. The chitinase 3-like protein human cartilage glycoprotein 39 (HC-gp39) stimulates proliferation of human connective-tissue cells and activates both extracellular signal-regulated kinaseand protein kinase B-mediated signalling pathways Biochem. J 2002 365, Pt 1:119–126.
[80] Balynska O. V., Baklaushev V. P., Areshkov P. O., Avdieiev S. S., Boyko O. I., Chekhonin V. P., Kavsan V. M. Characterization of new cell line stably expressing CHI3L1 oncogene Biopolym. Cell 2011 27, N 4:285–290.
[81] Kavsan V. M., Baklaushev V. P., Balynska O. V., Iershov A. V., Areshkov P. O., Yusubalieva G. M., Grinenko N. Ph., Victorov I. V., Rymar V. I., Sanson M., Chekhonin V. P. Gene encoding chitinase 3-like 1 protein (CHI3L1) is a putative oncogene Int. J. Biomed. Sci 2011 7, N 3:230–237.
[82] Baklaushev V. P., Kavsan V. M., Balynska O. V., Yusubalieva G. M., Abakumov M. A., Chekhonin V. P. New experimental model of brain tumors in brains of adult immunocompetent rats Brit. J. Med. Med. Res 2012 2, N 2:206–215.
[83] Hu B., Trinh K., Figueira W. F., Price P. A. Isolation and sequence of a novel human chondrocyte protein related to mammalian members of the chitinase protein family J. Biol. Chem 1996 271, N 32:19415–19420.
[84] Kavsan V., Dmitrenko V., Boyko O., Filonenko V., Avdeev S., Areshkov P., Marusyk A., Malisheva T., Rozumenko V., Zozulya Y. Overexpression of YKL-39 gene in glial brain tumors Scholarly Res. Exch 2008 2008–id 814849.
[85] Iershov A., Odynets K., Kornelyuk A., Kavsan V. Homology modeling of 3D structure of human chitinase-like CHI3L2 protein Central Eur. J. Biol 2010 5, N 4:407–420.
[86] Areshkov P. A., Kavsan V. M. Chitinase 3-like protein 2 (CHI3L2, YKL-39) activates phosphorylation of extracellular signal-regulated kinases ERK1/ERK2 in human embryonic kidney (HEK293) and human glioblastoma (U87 MG) cells Tsitol. Genet 2010 44, N 1:3–9.
[87] Areshkov P. O., Avdieiev S. S., Iershov A. V., Kavsan V. M. Stimulation of transient versus sustained ERK1/2 phosphorylation by relative chitinase-like proteins CHI3L1 and CHI3L2 correlates with different kinase localization and biological outcome Biopolym. Cell 2011 27, N 5:343–346.
[88] Areshkov P. O., Avdieiev S. S., Balynska O.V., LeRoith D., Kavsan V. M. Two closely related human members of chitinase-like family, CHI3L1 and CHI3L2, activate ERK1/2 in 293 and U372 cells but have the different influence on cell proliferation Int. J. Biol. Sci 2012 8, N 1:39–48.
[89] Kim Y., Seger R., Suresh Babu C. V., Hwang S. Y., Yoo Y. S. A positive role of the PI3-K/Akt signaling pathway in PC12 cell differentiation Mol. Cells 2004 18, N 3:353–359.
[90] Xuan Nguyen T. L., Choi J. W., Lee S. B., Ye K., Woo S. D., Lee K. H., Ahn J. Y. Akt phosphorylation is essential for nuclear translocation and retention in NGF-stimulated PC12 cells Biochem. Biophys. Res. Commun 2006 349, N 2:789–798.
[91] Andjelkovic M., Suidan H. S., Meier R., Frech M., Alessi D. R., Hemmings B. A. Nerve growth factor promotes activation of the alpha, beta and gamma isoforms of protein kinase B in PC12 pheochromocytoma cells Eur. J. Biochem 1998 251, N 1–2:195–200.
[92] Shao R., Hamel K., Petersen L., Cao Q. J., Arenas R. B., Bigelow C., Bentley B., Yan W. YKL-40, a secreted glycoprotein, promotes tumor angiogenesis Oncogene 2009 28, N 50:4456– 4468.
[93] Montana V., Sontheimer H. Bradykinin promotes the chemotactic invasion of primary brain tumors J. Neurosci 2011 31, N 13:4858–4867.
[94] Subtel'na I., Atamanyuk D., Szyman'ska E., Kiec-Kononowicz K., Zimenkovsky B., Vasylenko O., Gzella A., Lesyk R. Synthesis of 5-arylidene-2-amino-4-azolones and evaluation of their antiancer activity Bioorg. Med. Chem 2010 18, N 14:5090–5102.
[95] Mekler A. A., Kniazeva I., Schwartz D. R., Kuperin Y. A., Dmitrenko V. V., Rimar V. I., Kavsan V. M. 47 glioblastoma gene expression profile diagnostics by the artificial neural networks Optic. Mem. Neur. Networks (Inform. Optics) 2010 19, N 2:181–186.
[96] Fujita M., Khazenzon N. M., Ljubimov A. V., Lee B. S., Virtanen I., Holler E., Black K. L., Ljubimova J. Y. Inhibition of laminin-8 in vivo using a novel poly(malic acid)-based carrier reduces glioma angiogenesis Angiogenesis 2006 9, N 4:183–191.
[97] Stepanenko A. A., Kavsan V. M. Cancer genes and chromosome instability Oncogene and Cancer – From Bench to Clinic Ed. Y. Siregar New York: InTech Publisher, 2013:151–182.
[98] Stepanenko A. A., Kavsan V. M. Immortalization and malignant transformation of eukaryotic cells Tsitol. Genet 2012 46, N 2:36–75.
[99] Stepanenko A. A., Kavsan V. M. Evolutionary karyotypic theory of cancer versus conventional cancer gene mutation theory Biopolym. Cell 2012 28, N 4:267–280.