Biopolym. Cell. 2013; 29(2):107-116.
Огляди
Регуляція експресії генів гексокіназ і глюкозо-6-фосфатдегідрогенази за умов норми і патології
1Марунич Р. Ю.
  1. Навчально-науковий центр «Інститут біології»
    Київського національного університету імені Тараса Шевченка
    вул. Володимирська, 64/13, Київ, Україна, 01601

Abstract

Посилення гліколізу у пухлинах за аеробних умов відоме як феномен Варбурга, при цьому значно активується пентозофосфатний шунт. Пентозофосфатний шунт і гліколіз, особливо їхні перші ланки та регуляторний фермент 6-фосфофрукто-2-кіназа/фруктозо-2,6-бісфосфатаза піддаються впливу сигнальних систем клітини, таких як циркадіальний годинник, гіпоксія-індукуючий фактор і стрес ендоплазматичного ретикулуму. Це дозволяє онкотрансформованим клітинам адаптуватися до стресових чинників, серед яких гіпоксія, ішемія і дія низькомолекулярних агентів. Зроблено аналіз впливу сигнальних систем на експресію генів ключових ферментів гліколізу і пентозофосфатного шунту за нормальних умов та за умов онкологічної патології. Досліджено значення цього впливу для виживання онкотрансформованих клітин за стресових умов.
Keywords: гексокінази, глюкозо-6-фосфатдегідрогеназа, експресія генів, стрес

References

[1] Irwin D. M., Tan H. Molecular evolution of the vertebrate hexokinase gene family: identification of a conserved fifth vertebrate hexokinase gene Comp. Biochem. Physiol. Part. D. Genomics Proteomics 2008 3, N 1 P. 96–107.
[2] Murakami K., Kanno H., Tancabelic J., Fujii H. Gene expression and biological significance of hexokinase in erythroid cells Acta Haematol 2002 108, N 4 P. 204–209.
[3] Murakami K., Kanno H., Miwa S., Piomelli S. Human HKR isozyme: organization of the hexokinase I gene, the erythroid-specific promoter, and transcription initiation site Mol. Genet. Metab 1999 67, N 2 P. 118–130.
[4] Hantke J., Chandler D., King R., Wanders R. J., Angelicheva D., Tournev I., McNamara E., Kwa M., Guergueltcheva V., Kaneva R., Baas F., Kalaydjieva L. A mutation in an alternative untranslated exon of hexokinase 1 associated with hereditary motor and sensory neuropathy – Russe (HMSNR) Eur. J. Hum. Genet 2009 17, N 12 P. 1606–1614.
[5] Marin-Hernandez A., Gallardo-Perez J. C., Ralph S. J., Rodriguez-Enriquez S., Moreno-Sanchez R. HIF-1alpha modulates energy metabolism in cancer cells by inducing over-expression of specific glycolytic isoforms Mini Rev. Med. Chem 2009 9, N 9 P. 1084–1101.
[6] de Vooght K. M., van Solinge W. W., van Wesel A. C., Kersting S., van Wijk R. First mutation in the red blood cell-specific promoter of hexokinase combined with a novel missense mutation causes hexokinase deficiency and mild chronic hemolysis Haematologica 2009 94, N 9 P. 1203–1210.
[7] de Vooght K. M., van Wijk R., van Oirschot B. A., Rijksen G., van Solinge W. W. Pyruvate kinase regulatory element 1 (PKR-RE1) mediates hexokinase gene expression in K562 cells Blood Cells Mol. Dis 2005 34, N 2 P. 186–190.
[8] Heikkinen S., Suppola S., Malkki M., Deeb S. S., Janne J., Laakso M. Mouse hexokinase II gene: structure, cDNA, promoter analysis, and expression pattern Mamm. Genome 2000 11, N 2 P. 91–96.
[9] Qiu M. Z., Han B., Luo H. Y., Zhou Z. W., Wang Z. Q., Wang F. H., Li Y. H., Xu R. H. Expressions of hypoxia-inducible factor1a and hexokinase-II in gastric adenocarcinoma: the impact on prognosis and correlation to clinicopathologic features Tumour Biol 2011 32, N 1 P. 159–166.
[10] Peng Q., Zhou J., Zhou Q., Pan F., Zhong D., Liang H. Silencing hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil Hepatogastroenterology 2009 56, N 90 P. 355–360.
[11] Kim J. W., Gao P., Liu Y. C., Semenza G. L., Dang C. V. Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1 Mol. Cell Biol 2007 27, N 21 P. 7381–7393.
[12] Gosmain Y., Lefai E., Ryser S., Roques M., Vidal H. Sterol regulatory element-binding protein-1 mediates the effect of insulin on hexokinase II gene expression in human muscle cells Diabetes 2004 53, N 2 P. 321–329.
[13] Yasuda S., Arii S., Mori A., Isobe N., Yang W., Oe H., Fujimoto A., Yonenaga Y., Sakashita H., Imamura M. Hexokinase II and VEGF expression in liver tumors: correlation with hypoxia-inducible factor 1 alpha and its significance J. Hepatol 2004 40, N 1 P. 117–123.
[14] Gwak G. Y., Yoon J. H., Kim K. M., Lee H. S., Chung J. W., Gores G. J. Hypoxia stimulates proliferation of human hepatoma cells through the induction of hexokinase II expression J. Hepatol 2005 42, N 3 P. 358–364.
[15] Haberkorn U., Hoffend J., Schmidt K., Altmann A., Bonaterra G. A., Dimitrakopoulou-Strauss A., Strauss L. G., Eisenhut M., Kinscherf R. Changes in glucose metabolism and gene expression after transfer of anti-angiogenic genes in rat hepatoma Eur. J. Nucl. Med. Mol. Imaging 2007 34, N 12 P. 2011–2023.
[16] Ando M., Uehara I., Kogure K., Asano Y., Nakajima W., Abe Y., Kawauchi K., Tanaka N. Interleukin 6 enhances glycolysis through expression of the glycolytic enzymes hexokinase 2 and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 J. Nippon Med. Sch 2010 77, N 2 P. 97–105.
[17] Colosimo A., Calabrese G., Gennarelli M., Ruzzo A. M., Sangiuolo F., Magnani M., Palka G., Novelli G., Dallapiccola B. Assignment of the hexokinase type 3 gene (HK3) to human chromosome band 5q35.3 by somatic cell hybrids and in situ hybridization Cytogenet. Cell. Genet 1996 74, N 3 P. 187–188.
[18] Furuta H., Nishi S., Le Beau M. M, Fernald A. A, Yano H., Bell G. I. Sequence of human hexokinase III cDNA and assignment of the human hexokinase III gene (HK3) to chromosome band 5q35.2 by fluorescence in situ hybridization Genomics 1996 36, N 1 P. 206–209.
[19] Coerver K. A, Gray S. M, Barnes J. E, Armstrong D. L, McCabe E. R. Developmental expression of hexokinase 1 and 3 in rats Histochem. Cell. Biol 1998 109, N 1 P. 75–86.
[20] Bos R., van Der Hoeven J. J., van Der Wall E., van Der Groep P., van Diest P. J., Comans E. F., Joshi U., Semenza G. L., Hoekstra O. S., Lammertsma A. A., Molthoff C. F. Biologic correlates of (18) fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography J. Clin. Oncol 2002 20, N 2 P. 379–387.
[21] Fonteyne P., Casneuf V., Pauwels P., Van Damme N., Peeters M., Dierckx R., Van de Wiele C. Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma Histol. Histopathol 2009 24, N 8 P. 971–977.
[22] Sjoblom T., Jones S., Wood L. D., Parsons D.W ., Lin J., Barber T. D., Mandelker D., Leary R. J., Ptak J., Silliman N., Szabo S., Buckhaults P., Farrell C., Meeh P., Markowitz S. D., Willis J., Dawson D., Willson J. K., Gazdar A. F., Hartigan J., Wu L., Liu C., Parmigiani G., Park B. H., Bachman K. E., Papadopoulos N., Vogelstein B., Kinzler K. W., Velculescu V. E. The consensus coding sequences of human breast and colorectal cancers Science 2006 314, N. 5797 P. 268–274.
[23] Cardenas M. L., Cornish-Bowden A., Ureta T. Evolution and regulatory role of the hexokinases Biochim. Biophys. Acta 1998 1401, N 3 P. 242–264.
[24] Tiedge M., Steffeck H., Elsner M., Lenzen S. Metabolic regulation, activity state, and intracellular binding of glucokinase in insulin-secreting cells Diabetes 1999 48, N 3 P. 514–523.
[25] Massa L., Baltrusch S., Okar D. A., Lange A. J., Lenzen S., Tiedge M. Interaction of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (PFK-2/FBPase-2) with glucokinase activates glucose phosphorylation and glucose metabolisminInsulin-producing cells Diabetes 2004 53, N 4 P. 1020–1029.
[26] Hirota K., Sakamaki J., Ishida J., Shimamoto Y., Nishihara S., Kodama N., Ohta K., Yamamoto M., Tanimoto K., Fukamizu A. A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding J. Biol. Chem 2008 283, N 47 P. 32432–32441.
[27] Egea M., Meton I., Cordoba M., Fernandez F., Baanante I. V. Role of Sp1 and SREBP-1a in the insulin-mediated regulation of glucokinase transcription in the liver of gilthead sea bream (Sparus aurata) Gen. Comp. Endocrinol 2008 155, N 2 P. 359–367.
[28] Gasperikova D., Tribble N.D., Stanik J., Huckova M., Misovicova N., van de Bunt M., Valentinova L., Barrow B. A., Barak L., Dobransky R., Bereczkova E., Michalek J., Wicks K., Colclough K., Knight J. C., Ellard S., Klimes I., Gloyn A. L. Identification of a novel beta-cell glucokinase (GCK) promoter mutation (-71 G > C) that modulates GCK gene expression through loss of allele-specific Sp1 binding causing mild fasting hyperglycemia in humans Diabetes 2009 58, N 8 P. 1929–1935.
[29] Zhu L. L., Liu Y., Cui A. F., Shao D., Liang J. C., Liu X. J., Chen Y., Gupta N., Fang F. D., Chang Y. S. PGC-1a coactivates estrogen-related receptor-a to induce the expression of glucokinase Am. J. Physiol. Endocrinol. Metab 2010 298, N 6 E1210– 1218.
[30] Wu C., Okar D. A., Newgard C. B., Lange A. J. Overexpression of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase in mouse liver lowers blood glucose by suppressing hepatic glucose production J. Clin. Invest 2001 107, N 1 P. 91–98.
[31] Magnuson M. A., Niswender K. D., Pettepher C. C. Glucokinase gene expression and regulation Molecular Biology of Diabetes Totowa: Yumana press, 1994 Chapt. 7 P. 155–174.
[32] Estalella I., Rica I., Perez de Nanclares G., Bilbao J. R., Vazquez J. A., San Pedro J. I., Busturia M. A., Castano L., Spanish MODY Group Mutations in GCK and HNF-1alpha explain the majority of cases with clinical diagnosis of MODY in Spain Clin. Endocrinol. (Oxf) 2007 67, N 4 P. 538–546.
[33] Gomez-Zumaquero J. M., Rojo-Martinez G., Garcia-Escobar E., Martin-Nunez G. M., Haro J., Esteva I., Ruiz de Adana M., Cuesta A. L., Olveira G., Morcillo S., Soriguer F. The -30 G > A polymorphism of the glucokinase gene promoter is associated with obesity in a population from southern Spain Obesity (Silver Spring) 2008 16, N 8 P. 1973–1975.
[34] Garcia-Herrero C. M., Galan M., Vincent O., Flandez B., Gargallo M., Delgado-Alvarez E., Blazquez E., Navas M. A. Functional analysis of human glucokinase gene mutations causing MODY 2: exploring the regulatory mechanisms of glucokinase activity Diabetologia 2007 50, N 2 P. 325–333.
[35] Gloyn A. L., Noordam K., Willemsen M. A., Ellard S., Lam W. W., Campbell I. W., Midgley P., Shiota C., Buettger C., Magnuson M. A., Matschinsky F. M., Hattersley A. T. Insights into the biochemical and genetic basis of glucokinase activation from naturally occurring hypoglycemia mutations Diabetes 2003 52, N 9 P. 2433–2440.
[36] Tinto N., Zagari A., Capuano M., De Simone A., Capobianco V., Daniele G., Giugliano M., Spadaro R., Franzese A., Sacchetti L. Glucokinase gene mutations: structural and genotype-phenotype analyses in MODY children from south Italy PLoS ONE 2008 3, N 4 e1870.
[37] Bosco D., Meda P., Iynedjian P. B. Glucokinase and glucokinase regulatory protein: mutual dependence for nuclear localization Biochem. J 2000 348, Pt 1 P. 215–222.
[38] Chen X., Yue L., Li C. Li C. A novel G473A mutation in the glucose-6-phosphate dehydrogenase gene Pediatr. Blood Cancer 2010 55, N 2 P. 383–385.
[39] Al-Allawi N., Eissa A. A., Jubrael J. M., Jamal S. A., Hamamy H. Prevalence and molecular characterization of Glucose-6-Phosphate dehydrogenase deficient variants among the Kurdish population of Northern Iraq BMC Blood Disord 2010 10–P. 6.
[40] Nouraie M., Reading N. S., Campbell A., Minniti C. P., Rana S. R., Luchtman-Jones L., Kato G. J., Gladwin M. T., Castro O. L., Prchal J. T., Gordeuk V. R. Association of G6PD with lower haemoglobin concentration but not increased haemolysis in patients with sickle cell anaemia Br. J. Haematol 2010 150, N 2 P. 218–225.
[41] Rank K. B., Harris P. K., Ginsberg L. C., Stapleton S. R. Isolation and sequence of a rat glucose-6-phosphate dehydrogenase promoter Biochim. Biophys. Acta–1994 1217, N 1 P. 90–92.
[42] Philippe M., Larondelle Y., Lemaigre F., Mariame B., Delhez H., Mason P., Luzzatto L., Rousseau G. G. Promoter function of the human glucose-6-phosphate dehydrogenase gene depends on two GC boxes that are cell specifically controlled Eur. J. Biochem 1994 226, N 2 P. 377–384.
[43] Zhong D. N., Gao Z. Y., Liu Y. N., Liu Y., Wei L. M. Relationship between glucose-6-phosphate dehydrogenase gene mutations and neonatal jaundice in Naning, Guangxi Zhongguo Dang Dai Er Ke Za Zhi 2009 11, N 12 P. 970–972.
[44] Zhang Z., Liew C. W., Handy D. E., Zhang Y., Leopold J. A., Hu J., Guo L., Kulkarni R. N., Loscalzo J., Stanton R. C. High glucose inhibits glucose-6-phosphate dehydrogenase, leading to increased oxidative stress and b-cell apoptosis FASEB J 2010 24, N 5 P. 1497–1505.
[45] Manco L., Goncalves P., Macedo-Ribeiro S., Seabra C., Melo P., Ribeiro M. L. Two new glucose-6-phosphate dehydrogenase mutations causing chronic hemolysis Haematologica 2005 90, N 8 P. 1135–1136.
[46] San Millan J. L., Botella-Carretero J. I., Alvarez-Blasco F., Luque-Ramirez M., Sancho J., Moghetti P., Escobar-Morreale H. F. A study of the hexose-6-phosphate dehydrogenase gene R453Q and 11beta-hydroxysteroid dehydrogenase type 1 gene 83557insA polymorphisms in the polycystic ovary syndrome J. Clin. Endocrinol. Metab 2005 90, N 7 P. 4157–4162.
[47] Hellani A., Al-Akoum S., Abu-Amero K. K. G6PD Mediterranean S188F codon mutation is common among Saudi sickle cell patients and increases the risk of stroke Genet. Test Mol. Biomarkers 2009 13, N 4 P. 449–452.
[48] Wagle A., Jivraj S., Garlock G. L., Stapleton S. R. Insulin regulation of glucose-6-phosphate dehydrogenase gene expression is rapamycin-sensitive and requires phosphatidylinositol 3-kinase J. Biol. Chem 1998 273, N 24 P. 14968–14974.
[49] Xu C, Chakravarty K, Kong X, Tuy T. T, Arinze I. J, Bone F, Massillon D. Several transcription factors are recruited to the glucose6-phosphatase gene promoter in response to palmitate in rat hepatocytes and H4IIE cells J. Nutr 2007 137, N 3 P. 554–559.
[50] Valverde A. M., Benito M., Lorenzo M. Hormonal regulation of malic enzyme and glucose-6-phosphate-dehydrogenase expression in fetal brown-adipocyte primary cultures under non-proliferative conditions Eur. J. Biochem 1992 203, N 1–2 P. 313–319.
[51] Gao L., Mejias R., Echevarria M., Lopez-Barneo J. Induction of the glucose-6-phosphate dehydrogenase gene expression by chronic hypoxia in PC12 cells FEBS Lett 2004 569, N 1– 3 P. 256–260.
[52] Amir-Ahmady B., Salati L. M. Regulation of the processing of glucose-6-phosphate dehydrogenase mRNA by nutritional status J. Biol. Chem 2001 276, N 13 P. 10514–10523.
[53] Doherty C. J., Kay S. A. Circadian control of global gene expression patterns Annu. Rev. Genet 2010 44 P. 419–444.
[54] Siepka S. M., Yoo S. H, Park J., Lee C., Takahashi J. S. Genetics and neurobiology of circadian clocks in mammals Cold Spring Harb. Symp. Quant. Biol 2007 72 P. 251–259.
[55] Panda S., Hogenesch J. B., Kay S. A. Circadian rhythms from flies to human Nature 2002 417, N 6886 P. 329–335.
[56] Hogenesch J. B., Gu Y. Z., Jain S., Bradfield C. A. The basichelix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors Proc. Natl Acad. Sci. USA 1998 95, N 10 P. 5474–5479.
[57] King D. P., Zhao Y., Sangoram A. M., Wilsbacher L. D., Tanaka M., Antoch M. P., Steeves T. D., Vitaterna M. H., Kornhauser J. M., Lowrey P. L., Turek F. W., Takahashi J. S. Positional cloning of the mouse circadian CLOCK gene Cell 1997 89, N 4 P. 641–653.
[58] Eide E. J., Vielhaber E. L., Hinz W. A., Virshup D. M. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase I epsilon J. Biol. Chem 2002 277, N 19 P. 17248–17254.
[59] Sanada K., Okano T., Fukada Y. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1 J. Biol. Chem 2002 277, N 1 P. 267–271.
[60] Marunych R., Minchenko D., Kuznetsova A., Minchenko O. Quotidian dynamics of Clock, Bmal1 and Per2 circadian genes expression in different rat tissues Bull. of Taras Shevchenko National University of Kyiv. Series Biology 2011 58 P. 18–22.
[61] Semenza G. L. Oxygen-dependent regulation of mitochondrial respiration by hypoxia-inducible factor 1 Biochem. J 2007 405, N 1:1–9.
[62] Teboul M., Barrat-Petit M. A., Li X. M., Claustrat B., Formento J. L., Delaunay F., Levi F., Milano G. Atypical patterns of circadian CLOCK gene expression in human peripheral blood mononuclear cells J. Mol. Med 2005 83, N 9:693–699.
[63] Eide E. J., Woolf M. F., Kang H., Woolf P., Hurst W., Camacho F., Vielhaber E. L., Giovanni A., Virshup D. M. Control of mammalian circadian rhythm by CKI-epsilon-regulated proteasomemediated PER2 degradation Mol. Cell. Biol 2005 25, N 7 : 2795–2807.
[64] Okamura A., Iwata N., Tamekane A., Yakushijin K., Nishikawa S., Hamaguchi M., Fukui C., Yamamoto K., Matsui T. Casein kinase Ie down-regulates phospho-Akt via PTEN, following genotoxic stress-induced apoptosis in hematopoietic cells Life Sci 2006 78, N 14:1624–1629.
[65] Waddell D. S., Liberati N. T., Guo X., Frederick J. P., Wang X. F. Casein kinase Ie plays a functional role in the transforming growth factor-b signaling pathway J. Biol. Chem 2004 279, N 28:29236–29246.
[66] Inoue A., Muranaka S., Fujita H., Kanno T., Tamai H., Utsumi K. Molecular mechanism of diclofenac-induced apoptosis of promyelocytic leukemia: dependency on reactive oxygen species, Akt, Bid, cytochrome and caspase pathway Free Radic. Biol. Med 2004 37, N 8 P. 1290–1299.
[67] Wang W., El-Deiry W. S. Restoration of p53 to limit tumor growth Curr. Opin. Oncol 2008 20, N 1 P. 90–96.
[68] Meric-Bernstam F., Akcakanat A., Chen H., Do K. A., Sangai T., Adkins F., Gonzalez-Angulo A. M., Rashid A., Crosby K., Dong M., Phan A. T., Wolff R. A., Gupta S., Mills G. B., Yao J. PIK3CA/ PTEN mutations and Akt activation as markers of sensitivity to allosteric mTOR inhibitors Clin. Cancer Res 2012 18, N 6 P. 1777–1789.
[69] Rutter J., Reick M., Wu L. C., McKnight S. L. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors Science 2001 293, N 5529 P. 510–514.
[70] Kondratov R. V., Chernov M. V., Kondratova A. A., Gorbacheva V. Y., Gudkov A. V., Antoch M. P. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system Genes Dev 2003 17, N 15 P. 1921–1932.
[71] Yu W., Nomura M., Ikeda M. Interactivating feedback loops within the mammalian clock: BMAL1 is negatively autoregulated and upregulated by CRY1, CRY2 PER2 Biochem. Biophys. Res. Commun 2002 290, N 3 P. 933–941.
[72] Preitner N., Damiola F., Lopez-Molina L., Zakany J., Duboule D., Albrecht U., Schibler U. The orphan nuclear receptor REVERBa controls circadian transcription within the positive limb of the mammalian circadian oscillator Cell 2002 110, N 2 :251–260.
[73] Yagita K., Tamanini F., Yasuda M., Hoeijmakers J. H., van der Horst G. T., Okamura H. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein EMBO J 2002 21, N 6:1301–1314.
[74] Bunger M. K., Wilsbacher L. D., Moran S. M., Clendenin C., Radcliffe L. A., Hogenesch J. B., Simon M. C., Takahashi J. S., Bradfield C. A. Mop3 is an essential component of the master circadian pacemaker in mammals Cell 2000 103, N 7 P. 1009– 1017.
[75] Loboda A., Kraft W. K., Fine B., Joseph J., Nebozhyn M., Zhang C., He Y., Yang X., Wright C., Morris M., Chalikonda I., Ferguson M., Emilsson V., Leonardson A., Lamb J., Dai H., Schadt E., Greenberg H. E., Lum P. Y. Diurnal variation of the human adipose transcriptome and the link to metabolic disease BMC Med. Genomics 2009 2 P. 7.
[76] Hirota T., Okano T., Kokame K., Shirotani-Ikejima H., Miyata T., Fukada Y. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts J. Biol. Chem 2002 277, N 46 P. 44244–44251.
[77] Yin L., Wu N., Lazar M. A. Nuclear receptor Rev-erba: a heme receptor that coordinates circadian rhythm and metabolism Nucl. Recept. Signal 2010 8 e8.
[78] Raspe E., Duez H., Mansen A., Fontaine C., Fievet C., Fruchart J. C., Vennstrom B., Staels B. Identification of Rev-erba as a physiological repressor of apoC-III gene transcription J. Lipid Res 2002 43, N 12 P. 2172–2179.
[79] Doi R., Oishi K., Ishida N. CLOCK regulates circadian rhythms of hepatic glycogen synthesis through transcriptional activation of Gys2 J. Biol. Chem 2010 285, N 29 P. 22114–22121.
[80] So A. Y., Bernal T. U., Pillsbury M. L., Yamamoto K. R., Feldman B. J. Glucocorticoid regulation of the circadian clock modulates glucose homeostasis Proc. Natl Acad. Sci. USA 2009 106, N 41 P. 17582–17587.
[81] Kondratov R. V., Vykhovanets O., Kondratova A. A., Antoch M. P. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1 Aging (Albany NY) 2009 1, N 12 P. 979–987.
[82] Aragon T., van Anken E., Pincus D., Serafimova I. M., Korennykh A. V., Rubio C. A., Walter P. Messenger RNA targeting to endoplasmic reticulum stress signalling sites Nature 2009 457, N 7230 P. 736–740.
[83] Romero-Ramirez L., Cao H., Nelson D., Hammond E., Lee A. H., Yoshida H., Mori K., Glimcher L. H., Denko N. C., Giaccia A. J., Le Q. T., Koong A. C. XBP1 is essential for survival under hypoxic conditions and is required for tumor growth Cancer Res 2004 64, N 17 P. 5943–5947.
[84] Auf G., Jabouille A., Guerit S., Pineau R., Delugin M., Bouchecareilh M., Magnin N., Favereaux A., Maitre M., Gaiser T., von Deimling A., Czabanka M., Vajkoczy P., Chevet E., Bikfalvi A., Moenner M. Inositol-requiring enzyme 1a is a key regulator of angiogenesis and invasion in malignant glioma Proc. Natl Acad. Sci USA 2010 107, N 35 P. 15553–15558.
[85] Moenner M., Pluquet O., Bouchecareilh M., Chevet E. Integrated endoplasmic reticulum stress responses in cancer Cancer Res 2007 67, N 22 P. 10631–10634.
[86] Minchenko D.O., Marunych R. Y., Khomenko E. V., Bakalets T. V., Minchenko O. H. Expression of hexokinase and 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase genes in ERN1 knockdown glioma U87 cells: effect of hypoxia and glutamine or glucose deprivation Stud. Biol 2011 5, N 3 P. 5–18.
[87] Minchenko A., Leshchinsky I., Opentanova I., Sang N., Srinivas V., Armstead V., Caro J. Hypoxia-inducible factor-1-mediated expression of the 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase-3 (PFKFB3) gene. Its possible role in the Warburg effect J. Biol. Chem 2002 277, N 8 P. 6183–6187.
[88] Minchenko O., Opentanova I., Minchenko D., Esumi H. Hypoxia induces transcription of 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase 4 gene via hypoxia-inducible factor-1a activation FEBS Lett 2004 576, N 1–2 P. 14–20.
[89] Marunych R. Y., Minchenko D. O., Kubaichuk K. I., Bakalets T. V., Minchenko O. H. Effect of hypoxia and ischemia on the expression of phosphofructokinase-1 and lactate dehydrogenase genes in glioma U87 cells with ERN1 knockdown. Physics Alive 2011 19, N 1 P. 50–62.