Biopolym. Cell. 2012; 28(6):449-455.
Молекулярна та клітинна біотехнології
Створення стійких до гліфосату рослин Brassica napus L., які експресують десатуразу DesC ціанобактерії Synechococcus vulcanus
1Сахно Л. О., 1Герасименко І. М., 1Комарницький І. К., 1Шелудько Ю. В., 2Голденкова-Павлова І. В.
  1. Інститут клітинної біології та генетичної інженерії НАН України
    вул. Академіка Заболотного, 148, Київ, Україна, 03680
  2. М. І. Вавілова РАН
    вул. Губкіна, 3, Москва, Російська Федерація, 119991

Abstract

Мета. Створення стійких до гербіциду Roundup рослин ріпаку, що експресують біфункціональний гібридний ген desC::licBM3, в якому послідовність десатурази DesC ціанобактерії S. vulcanus без сигналу транспорту в пластиди злита з послідовністю гена репортерного білка ліхенази LicBM3 Clostridium thermocellum. Методи. Agrobacterium tumefaciens-опосередкована трансформація, ПЛР, якісне і кількісне визначення активності термостабільної ліхенази, генетичний аналіз. Результати. Отримано трансгенні рослини ріпаку, які несуть два цільових гени: єнолпіруватшикі- матфосфатсинтази (epsps), що забезпечує стійкість рослин до гербіцидів на основі фосфонометилгліцину, і гена desC::licBM3. Присутність трансгенів у геномі рослин підтверджено методом мультиплексної ПЛР. Експресію гена epsps показано на рівні транскрипціі, за умов in vitro та in vivo (теплиця). Наявність продукту гена licBM3 у складі гібридного білка дозволила оцінити експресію злитого з ним гена десатурази. Простежено успадкування введених генів і їхня експресія в першому поколінні. Висновки. Отримано лінії трансгенних рослин ріпаку, підтверджено присутність трансгенів у геномі рослин і доведено експресію цільових генів.
Keywords: Brassica napus, epsps, desC, licBM3, ліхеназа

References

[1] Los D. A., Murata N. 1998 Structure and expression of fatty acid desaturases Biochim. Biophys. Acta 1394, N 1:3–15.
[2] Ishizaki-Nishizawa O., Fujii T., Azuma M., Sekiguchi K., Murata N., Ohtani T., Toguri T. 1996 Low-temperature resistance of higher plants is significantly enchanced by a nonspecific cyanobacterial desaturase Nat. Biotechnol 14, N 8:1003–1006.
[3] Craig W., Lenzi P., Scotti N., De Palma M., Saggese P., Carbone V., McGrath Curran N., Magee A. M., Medgyesy P., Kavanagh T. A., Dix P. J., Grillo S., Cardi T. Transplastomic tobacco plants expressing a fatty acid desaturase gene exhibit altered fatty acid profiles and improved cold tolerance Transgenic Res 2008 17, N 5:769–782.
[4] Orlova I. V., Serebriiskaya T. S., Popov V., Merkulova N., Nosov A. M., Trunova T. I., Tsydendambaev V. D., Los D. A. 2003 Transformation of tobacco with a gene for the thermophilic acyl-lipid desaturase enhances the chilling tolerance of plants Plant Cell Physiol 44, N 4:447–450.
[5] Kodama H., Hamada T., Horiguchi C., Nishimura M., Iba K. Genetic enhancement of cold tolerance by expression of a gene for chloroplast -3 fatty acid desaturase in transgenic tobacco Plant Physiol 1994 105, N 2:601–605.
[6] Maali A. R., Goldenkova-Pavlova I. V., Pchelkin V. P., Tsydendambaev V. D., Los D. A., Nosov A. M. 2007 Acyl-lipid D12-desaturase of the cyanobacterium increases the unsaturation degree in transgenic potato (Solanum tuberosum L.) Biologija 53, N 2 P. 4–7.
[7] De Palma M., Grillo S., Massarelli I., Costa A., Balogh G., Vigh L., Leone A. 2008 Regulation of desaturase gene expression, changes in membrane lipid composition and freezing tolerance in potato plants Mol. Breeding 21, N 1:15–26.
[8] Madi L., Wang X., Kobiler I., Lichter A., Prusky D. 2003 Stress on avocado fruits regulates D9-stearoyl ACP desaturase expression, fatty acid composition, antifungal diene level and resistance to Colletotrichum gloeosporioides attack Physiol. Mol. Plant Pathol 62, N 5:277–283.
[9] Sakhno L. A., Gocheva E. A., Komarnitskii I. K., Kuchuk N. V. 2008 Stable expression of the promoterless bar gene in transformed rapeseed plants Cytology and Genetics 42, N 1:16–22.
[10] Maali R., Schimschilaschvili H. R., Pchelkin V. P., Tsydendambaev V. D., Nosov A. M., Los D. A., Goldenkova-Pavlova I. V. 2007 Comparative expression in Escherichia coli of the native and hybrid genes for acyl-lipid D9 desaturase Rus. J. Genet 43, N 2:121–126.
[11] Cheung W. Y., Hubert N., Landry B. S. 1993 A simple and rapid DNA microextraction method for plant, animal and insect suitable for RAPD and other PCR analyses PCR Methods Appl 3, N 1:69–70.
[12] Sakhno L. O., Komarnitskii I. K., Maistrov P. D., Kuchuk M. V. 2011Creation of glyphosate resistant canola by synthetic epsps gene introduction Factors of experimental evolution of organisms Kyiv: Logos,:388–393.
[13] Gerasymenko I. M., Sakhno L. O., Golovach I. S., Kishchenko O. M., Sindarovska Y. R., Shimshilashvili H. R., Sheludko Y. V., Goldenkova-Pavlova I. V. 2010 Raise of plants possessing genes for acyl-lipid desaturases from the cyanobacteria VOGiS Herald 14, N 1:127–133.
[14] Logemann J., Schell J., Willmitzer L. 1987 Improved method for the isolation of RNA from plant tissues Anal. Biochem 163, N 1:16–20.
[15] Murashige T, Skoog F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant. 1962;15(3):473–97.
[16] Wood T. M., Bhat K. M. Methods for measuring cellulase activities Methods Enzymol 1988 160:87–112.
[17] Bradford M. M. 1976 A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding Anal. Biochem 72:248–254.
[18] Radchuk V. V., Klocke E., Radchuk R. I., Blum Ya. B. Production of transgenic rape plants (Brassica napus L.) using Agrobacterium tumefaciens Rus. J. Genet 2000 36, N 7:932–941.
[19] Herve C., Rouan D., Guerche P., Montane M.-H., Yot P. 1993 Molecular analysis of transgenic rapeseed plants obtained by direct transfer of two separate plasmids containing, respectively, the cauliflower mosaic virus coat protein gene and a selectable marker gene Plant Science 91, N 2:181–193.
[20] Sakhno L. O., Morgun B. V., Kvasko O. Y., Kuchuk M. V. Transformed canola plants expressing mammalian cyp11A1 gene of cytochrome P450scc Biotechnology (Ukrainian) 2010 3, N 5:74–82.
[21] Sakhno L. O., Kvasko O. Y., Olevinska Z. M., Spivak M. Y., Kuchuk M. V. Creation of transgenic Brassica napus L. plants expressing human alpha 2b interferon gene Cyt. Genet 2012 46, N 6:342–346.
[22] Radchuk V. V., Van D. T., Klocke E. Multiple gene co-integration in Arabidopsis thaliana predominantly occurs in the same genetic locus after simultaneous in planta transformation with distinct Agrobacterium tumefaciens strains Plant Science 2005 168, N 6:1515–1523.
[23] De Block M., Debrouwer D. 1991 Two T-DNA's co-transformed into Brassica napus by a double Agrobacterium tumefaciens infection are mainly integrated at the same locus Theor. Appl. Genet 82, N 3:257–263.
[24] Naqvi S., Farre G., Sanahuja G., Capell T., Zhu C., Christou P. 2010 When more is better: multigene engineering in plants Trends Plant Sci 15, N 1:48–56.
[25] Goldenkova-Pavlova I. V., Mirahorli N., Maali A. R., Isaenko E., Kartel N. A. 2007 Experimental models for creation of transgenic plants resistant to stressors Cytology and Genetics 41, N 3:167–171.