Biopolym. Cell. 2012; 28(3):163-170.
Огляди
Огляд методів моделювання мереж генної регуляції: булеві і баєсові мережі
1Фролова А. О.
  1. Інститут молекулярної біології і генетики НАН України
    вул. Академіка Заболотного, 150, Київ, Україна, 03680

Abstract

Однією з проблем сучасної системної біології є моделювання мереж генної регуляції, які у найповнішому вигляді відтворюють регуляторні взаємодії між генами всього організму. Надзвичайна обчислювальна складність цієї задачі та відсутність ґрунтовних оглядів методів реконструкції генних мереж є значною перешкодою для подальшого розвитку цього напрямку системної біології. У даній статті розглянуто два найпоширеніших методи моделювання мереж генної регуляції: булеві і баєсові мережі, та наведено математичний опис кожного з них, а також розкрито декілька алгоритмічних підходів до моделювання генних мереж за допомогою цих методів, вказано на складність алгоритмів та зазначено проблеми, що виникають при їхньому застосуванні.
Keywords: реконструкція мереж генної регуляції, булеві мережі, баєсові мережі

References

[1] Lee W.-P., Tzou W.-S. Computational methods for discovering gene networks from expression data Brief. Bioinform 2009 10, N 4:408–423.
[2] Hecker M., Lambeck S., Toepfer S., van Someren E., Guthke R. Gene regulatory network inference: data integration in dynamic models – a review Biosystems 2009 96, N 1:86–103.
[3] Karlebach G., Shamir R. Modelling and analysis of gene regulatory networks Nat. Rev. Mol. Cell Biol 2008 9:770–780.
[4] Ott S., Imoto S., Miyano S. Finding optimal models for small gene networks Pac. Symp. Biocomp 2004 9:557–567.
[5] Margolin A. A., Nemenman I., Basso K., Wiggins C., Stolovitzky G., Favera R. D., Califano A. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context BMC Bioinformatics 2006 7, Suppl. 1 S 7.
[6] Klipp E. Systems biology in practice: concepts, implementation and application New York: Wiley-VCH, 2005 465 p.
[7] Kauffman S. Antichaos and adaptation Sci. Am 1991 265, N 2:78–84.
[8] Kauffman S. The Origins of Order Oxford: Univ. press, 1993 709 p.
[9] Kauffman S. Investigations Oxford: Univ. press, 2002 308 p.
[10] Akutsu T., Miyano S., Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model Pac. Symp. Biocomp 1999 4 P. 17–28.
[11] Martin S., Zhang Z., Martino A., Faulon J. L. Boolean dynamics of genetic regulatory networks inferred from microarray time series data Bioinformatics 2007 23, N 7:866.
[12] Higa C., Louzada V., Andrade T., Hashimoto R. Constraint-based analysis of gene interactions using restricted boolean networks and time-series data BMC Proceedings 2011 5, Suppl. 2 S 5.
[13] Lau K., Ganguli S., Tang C. Function constrains network architecture and dynamics: a case study on the yeast cell cycle Boolean network Phys. Rev. E. Stat. Nonlin. Soft Matter Phys 2006 75, N 5, pt 1 051907.
[14] Xia Q., Liu L., Ye W., Hu G. Inference of gene regulatory networks with the strong-inhibition Boolean model New J. Phys 2011 13, N 8 083002.
[15] Tsang E. P. K. Foundations of constraint satisfaction London; San Diego: Acad. press, 1993 405 p.
[16] Lee W.-P., Tzou W.-S. Computational methods for discovering gene networks from expression data Brief Bioinform 2009 10, N 4:408–423.
[17] Liang S., Fuhrman S., Somogyi R. Reveal, a general reverse engineering algorithm for inference of genetic network architectures Pac. Symp. Biocomp 1998 3:22.
[18] Zola J., Aluru M., Aluru S. Parallel information theory based construction of gene regulatory networks Hipc 2008 5374 P. 336–349.
[19] Margolin A. A., Nemenman I., Basso K., Wiggins C., Stolovitzky G., Favera R. D., Califano A. ARACNE: An algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context BMC Bioinformatics 2006 7, suppl. 1 S 7.
[20] Zola J., Aluru M., Sarje A., Aluru S. Parallel information-theory-based construction of genome-wide gene regulatory networks IEEE Transactions on Parallel and Distributed Systems 2010 21, N 12:1721–1733.
[21] Daub C. O., Steuer R., Selbig J., Kloska S. Estimating mutual information using B-spline functions-an improved similarity measure for analyzing gene expression data BMC Bioinformatics 2004 5–P. 118.
[22] Friedman N., Linial M., Nachman I., Pe'er D. Using Bayesian networks to analyze expression data J. Comp. Biol 2000 7, N 3–4:601–620.
[23] Wu H., Liu X. Dynamic bayesian networks modeling for inferring genetic regulatory networks by search strategy: Comparison between greedy hill climbing and mcmc methods Proc. World Acad. Sci., Engin. Technol 2008 34:224–234.
[24] Sima C., Hua J., S. Jung S. Inference of gene regulatory networks using time-series data: A survey Curr. Genomics 2009 10, N 6:416–429.
[25] Yu J., Smith V. A., Wang P. P., Hartemink A. J., Jarvis E. D. Using Bayesian network inference algorithms to recover molecular genetic regulatory networks 3rd Int. Conf. Syst. Biol. (ICSB02) Stockholm, 2002.
[26] Chickering D., Heckerman D., Meek C. Large-sample learning of Bayesian networks is NP-hard J. Mach. Learn. Res 2004 5:1287–1330.
[27] De Campos L., Fernandez-Luna J., Puerta J. An iterated local search algorithm for learning Bayesian networks with restarts based on conditional independence tests Int. J. Intellig. Syst 2003 18, N 2:221–235.
[28] Scollnik D. An introduction to Markov Chain Monte Carlo methods and their actuarial applications Proc. Casualty Actuarial Soc 1996 83 P . 114–165.
[29] Chib S., Greenberg E. Understanding the Metropolis-Hastings algorithm Am. Statistic 1995 49, N 4:327–335.
[30] Friedman N., Koller D. Being Bayesian about network structure. A Bayesian approach to structure discovery in Bayesian networks Machine Learning 2003 50, N 1:95–125.
[31] Yu J., Smith V., Wang P., Hartemink,A., Jarvis E. Advances to Bayesian network inference for generating causal networks from observational biological data Bioinformatics 2004 20, N 18:3594–3603.
[32] Vignes M., Vandel J., Allouche D., Ramadan-Alban N., CiercoAyrolles C., Schiexet T., Mangin B., de Givry B. Gene regulatory network reconstruction using Bayesian networks, the dantzig selector, the lasso and their meta-analysis PLoS ONE 2011 6, N 12 e29165.