Biopolym. Cell. 2012; 28(2):93-102.
Огляди
Сиртуїни – універсальні регулятори клітинних функцій
1Кайдашев І. П.
  1. Вищий державний навчальний заклад України «Українска медична стоматологічна академія»
    вул. Шевченко, 23, Полтава, Україна, 36024

Abstract

Гени регуляторів вимкненої інформації (SIR) кодують висококонсервативну родину білків – сиртуїни, досить розповсюджені від бактерій до ссавців. Сиртуїни є NAD+-залежними деацетилазами білків із широким спектром фізіологічних функцій при регуляції тривалості життя, запалення, енергетичного метаболізму, онкогенезу. Вони є частиною складної системи біологічної відповіді, що впливає й на інші регуляторні молекули та процеси. Сиртуїни реагують на чисельні фактори зовнішнього середовища (зміна раціону, спосіб життя, дія токсинів тощо), спричиняючи епігенетичні модифікації. Узагальнено дані стосовно важливості вітаміну B3 у підтримці ферментативної активності сиртуїнів та ролі нікотинаміду в інгібуванні цієї активності. Таку форму регуляції можна використовувати для впливу на активність сиртуїнів за різних патологічних станів.
Keywords: сиртуїни, деацетилаза, эпігенетика, АДФ-рибозил-трансфераза, регуляція

References

[1] Rusche L. N., Kirchmaier A. L., Rine J. The establishment, inheritance and function of silenced chromatin in Saccharomyces cerevisiae Annu. Rev. Biochem 2003 72:481–516.
[2] Horio Y., Hayashi T., Kuno A., Kunimoto R. Cellular and molecular effects of sirtuins in health and disease Clin. Sci. (Lond) 2011 121, N 5:191–203.
[3] Haigis M. C., Sinclair D. A. Mammalian sirtuins: biological insights and disease relevance Annu. Rev. Pathol 2010 5 :253–295.
[4] Kelly G. A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratol: part Altern. Med. Rev 2010 15, N 3:245–263.
[5] Michishita E., Park J. Y., Burneskis J. M., Barrett J. C., Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins Mol. Biol. Cell 2005 16, N 10:4623–4635.
[6] Tennen R. I., Berber E., Chua K. F. Functional dissection of SIRT6: identification of domains that regulate histone deacetylase activity and chromatin localization Mech. Ageing Dev 2010 131, N 3:185–192.
[7] Shan T., Wang Y., Wu T., Liu C., Guo J., Zhang Y., Liu J., Xu Z. Porcine sirtuin 1 gene clone, expression pattern, and regulation by resveratrol J. Anim. Sci 2009 87, N 3:895–904.
[8] Harting K., Knoell B. SIRT2-mediated protein deacetylation: an emerging key regulator in brain physiology and pathology Eur. J. Cell Biol 2010 89, N 2–3:262–269.
[9] Wang F., Tong Q. SIRT2 suppresses adipocyte differentiation by deacetylating FOXO1 and enhancing FOXO1’s repressive interaction with PPARgamma Mol. Biol. Cell 2009 20, N 3:801–808.
[10] Huang J. Y., Hirschey M. D., Shimazu T., Ho L., Verdin E. Mitochondrial sirtuins Biochim. Biophys. Acta 2010 1804, N 8 P. 1645–1651.
[11] Sundaresan N. R., Samant S. A., Pillai V. B., Rajamohan S. B., Gupta M. P. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70 Mol. Cell. Biol 2008 28, N 20:6384–6401.
[12] Ahuja N., Schwer B., Carobbio S., Waltregny D., North B. J., Castronovo V., Maechler P., Verdin E. Regulation of insulin secretion by SIRT4, a mitochondrial ADP-ribosyltransferase J. Biol. Chem 2007 282, N 46:33583–33592.
[13] Ogura M., Nakamura Y., Tanaka D., Zhuang X., Fujita Y., Obara A., Hamasaki A., Hosokawa M., Inagaki N. Overexpression of SIRT5 confirms its involvement in deacetylation and activation of carbamoyl phosphate synthetase 1 Biochem. Biophys. Res. Commun 2010 393, N 1:73–78.
[14] Koltai E., Szabo Z., Atalay M., Boldogh I., Naito H., Goto S., Nyakas C., Radak Z. Exercise alters SIRT1, SIRT6, NAD and NAMPT levels in skeletal muscle of aged rats Mech. Ageing Dev 2010 131, N 1:21–28.
[15] Liszt G., Ford E., Kurtev M., Guarente L. Mouse Sir2 homolog SIRT6 is a muclear ADP-ribosyltransferase J. Biol. Chem 2005 280, N 22:21313–21320.
[16] Ford E., Voit R., Liszt G., Magin C., Grummt I., Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription Genes Dev 2006 20, N 9:1075– 1080.
[17] Vakhrusheva O., Smolka C., Gajawada P., Kostin S., Boettger T., Kubin T., Braun T., Bober E. Sirt7 increases stress resistance of cardiomyocytes and prevents apoptosis and inflammatory cardiomyopathy in mice Circ. Res 2008 102, N 6:703–710.
[18] Kong X. X., Wang R., Liu X. J., Zhu L. L., Shao D., Chang Y. S., Fang F. D. Function of SIRT1 in physiology Biochemistry (Mosc) 2009 74, N 7:703–708.
[19] Sauve A. A. Sirtuin chemical mechanisms Biochim. Biophys. Acta 2010 1804, N 8:1591–1603.
[20] Blander G., Guarente L. The Sir2 family of protein deacetylases Annu. Rev. Biochem 2004 73:417–435.
[21] North B. J., Verdin E. Sirtuins: Sir2-related NAD-dependent protein deacetylases Genome Biol 2004 5, N 5:224.
[22] Ziegler M. New functions of a long-known molecule. Emerging roles of NAD in cellular signaling Eur. J. Biochem 2000 267, N 6:1550–1564.
[23] Weyrich P., Machicao F., Reinhardt J., Machann J., Schick F., Tschritter O., Stefan N., Fritsche A., Haring H. U. SIRT1 genetic variants associate with the metabolic response of Caucasians to a controlled lifestyle intervention – the TULIP Study BMC Med. Genet 2008 9:100.
[24] Peeters A. V., Beckers S., Verrijken A., Mertens I., Roevens P., Peeters P. J., Van Hul W., Van Gaal L. F. Association of SIRT1 gene variation with visceral obesity Hum. Genet 2008 124, N 4:431–436.
[25] Zillikens MC, van Meurs JB, Rivadeneira F, Amin N, Hofman A, Oostra BA, Sijbrands EJ, Witteman JC, Pols HA, van Duijn CM, Uitterlinden AG. SIRT1 genetic variation is related to BMI and risk of obesity. Diabetes. 2009;58(12):2828-34.
[26] Zillikens M. C., van Meurs J. B., Sijbrands E. J., Rivadeneira F., Dehghan A., van Leeuwen J. P., Hofman A., van Duijn C. M., Witteman J. C., Uitterlinden A. G., Pols H. A. SIRT1 genetic variation and mortality in type 2 diabetes: interaction with smoking and dietary niacin Free Radic. Biol. Med 2009 46, N 6 :836–841.
[27] Kuningas M., Putters M., Westendorp R. G., Slagboom P. E., van Heemst D. SIRT1 gene, age-related diseases, and mortality: the Leiden 85-plus study J. Gerontol. A. Biol. Sci. Med. Sci 2007 62, N 9:960–965.
[28] Rose G., Dato S., Altomare K., Bellizzi D., Garasto S., Greco V., Passarino G., Feraco E., Mari V., Barbi C., BonaFe M., Franceschi C., Tan Q., Boiko S., Yashin A. I., De Benedictis G. Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly Exp. Gerontol 2003 38, N 10:1065–1070. (03) 00209-2
[29] Polito L., Kehoe P. G., Forloni G., Albani D. The molecular genetics of sirtuins: association with human longevity and agerelated diseases Int. J. Mol. Epidemiol. Genet 2010 1, N 3:214–225.
[30] Estep P. W. 3rd, Warner J. B., Bulyk M. L. Short-term calorie restriction in male mice feminizes gene expression and alters key regulators of conserved aging regulatory pathways PLoS One 2009 4, N 4 e 5242.
[31] Allard J. S., Heilbronn L. K., Smith C., Hunt N. D., Ingram D. K., Ravussin E.; Pennington CALERIE Team, de Cabo R. In vitro cellular adaptations of indicators of longevity in response to treatment with serum collected from humans on calorie restricted diets PloS One 2008 3, N 9 e 3211.
[32] Civitarese A. E., Carling S., Heilbronn L. K., Hulver M. H., Ukropcova B., Deutsch W. A., Smith S. R., Ravussin E.; CALERIE Pennington Team. Calorie restriction increases muscle mitochondrial biogenesis in healthy humans PLoS Med 2007 4, N 3 e76.
[33] Crujeiras A. B., Parra D., Goyenechea E., Martinez J. A. Sirtuin gene expression in human mononuclear cells is modulated by caloric restriction Eur. J. Clin. Invest 2008 38, N 9:672–678.
[34] Firestein R., Blander G., Michan S., Oberdoerffer P., Ogino S., Campbell J., Bhimavarapu A., Luikenhuis S., de Cabo R., Fuchs C., Hahn W. C., Guarente L. P., Sinclair D. A.The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth PloS One 2008 3, N 4 e2020.
[35] Gerhart-Hines Z., Rodgers J. T., Bare O., Lerin C., Kim S. H., Mostoslavsky R., Alt F. W., Wu Z., Puigserver P. Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha EMBO J 2007 26, N 7 :1913–1923.
[36] Kume S., Uzu T., Horiike K., Chin-Kanasaki M., Isshiki K., Araki S., Sugimoto T., Haneda M., Kashiwagi A., Koya D. Calorie restriction enhances cell adaptation to hypoxia through SIRT1dependent mitochondrial autophagy in mouse aged kidney J. Clin. Invest 2010 120, N 4:1043–1055.
[37] Picard F., Kurtev M., Chung N., Topark-Ngarm A., Senawong T., Machado De Oliveira R., Leid M., McBurney M. W., Guarente L. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-gamma Nature 2004 429, N 6993:771–776.
[38] Hirschey M. D., Shimazu T., Goetzman E., Jing E., Schwer B., Lombard D. B., Grueter C. A., Harris C., Biddinger S., Ilkayeva O. R., Stevens R. D., Li Y., Saha A. K., Ruderman N. B., Bain J. R., Newgard C. B., Farese R. V. Jr., Alt F. W., Kahn C. R., Verdin E. SIRT 3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation Nature 2010 464, N 7285 P. 121–125.
[39] Palacios O. M., Carmona J. J., Michan S., Chen K. Y., Manabe Y., Ward J. L. 3rd, Goodyear L. J., Tong Q. Diet and exercise signals regulate SIRT3 and activate AMPK and PGC-1alpha in skeletal muscle Aging (Albany NY) 2009 1, N 9:771–783.
[40] Shi T., Fan G. Q., Xiao S. D. SIRT3 reduces lipid accumulation via AMPK activation in human hepatic cells J. Dig. Dis 2010 11, N 1:55–62.
[41] Shimazu T., Hirschey M. D., Huang J. Y., Ho L. T., Verdin E. Acetate metabolism and aging: an emerging connection Mech. Ageing Dev 2010 131, N 7–8:511–516.
[42] Nakagawa T., Guarente L. Urea cycle regulation by mitochondrial sirtuin, SIRT5 Aging (Albany NY) 2009 1, N 6 P. 578–581.
[43] Erion D. M., Yonemitsu S., Nie Y., Nagai Y., Gillum M. P., Hsiao J. J., Iwasaki T., Stark R., Weismann D., Yu X. X., Murray S. F., Bhanot S., Monia B. P., Horvath T. L., Gao Q., Samuel V. T., Shulman G.I. SirT1 knockdown in liver decreases basal hepatic glucose production and increases hepatic insulin responsiveness in diabetic rats Proc. Natl Acad. Sci. USA 2009 106, N 27 P. 11288–11293.
[44] Nie Y., Erion D. M., Yuan Z., Dietrich M., Shulman G. I., Horvath T. L., Gao Q. STAT3 inhibition of gluconeogenesis is downregulated by SIRT1 Nat. Cell Biol 2009 11, N 4:492–500.
[45] Purushotham A., Schug T. T., Xu Q., Surapureddi S., Guo X., Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation Cell Metab 2009 9, N 4:327–338.
[46] Rodgers J. T., Lerin C., Haas W., Gygi S. P., Spiegelman B. M., Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 Nature 2005 434, N 7029:113–118.
[47] Rodgers J. T., Puigserver P. Fasting-dependent glucose and lipid metabolic response through hepatic sirtuin 1 Proc. Natl Acad. Sci. USA 2007 104, N 31:12861–12866.
[48] Ramadori G., Lee C. E., Bookout A. L., Lee S., Williams K. W., Anderson J., Elmquist J. K., Coppari R. Brain SIRT1: anatomical distribution and regulation by energy availability J. Neurosci 2008 28, N 40:9989–9996.
[49] Cakir I., Perello M., Lansari O., Messier N. J., Vaslet C. A., Nillni E. A. Hypothalamic Sirt1 regulates food intake in a rodent model system PLoS One 2009 4, N 12 e 8322.
[50] Suwa M., Nakano H., Radak Z., Kumagai S. Endurance exercise increases the SIRT1 and peroxisome proliferator-activated receptor gamma coactivator-1alpha protein expressions in rat skeletal muscle Metabolism 2008 57, N 7:986–998.
[51] Hokari F., Kawasaki E., Sakai A., Koshinaka K., Sakuma K., Kawanaka K. Muscle contractile activity regulates Sirt3 protein expression in rat skeletal muscles J. Appl. Physiol 2010 109, N 2:332–340.
[52] Dumke C. L., Mark Davis J., Angela Murphy E., Nieman D. C., Carmichael M. D., Quindry J. C., Travis Triplett N., Utter A. C., Gross Gowin S. J., Henson D. A., McAnulty S. R., McAnulty L. S. Successive bouts of cycling stimulates genes associated with mitochondrial biogenesis Eur. J. Appl. Physiol 2009 107, N 4:419–427.
[53] Lanza I. R., Short D. K., Short K. R., Raghavakaimal S., Basu R., Joyner M. J., McConnell J. P., Nair K. S. Endurance exercise as a countermeasure for aging Diabetes 2008 57, N 11 P. 2933–2942. h
[54] Oliva J., French B. A., Li J., Bardag-Gorce F., Fu P., French S. W. Sirt1 is involved in energy metabolism: the role of chronic ethanol feeding and resveratrol Exp. Mol. Pathol 2008 85, N 3:155–159.
[55] Lieber C. S., Leo M. A., Wang X., Decarli L. M. Effect of chronic alcohol consumption on Hepatic SIRT1 and PGC-1alpha in rats Biochem. Biophys. Res. Commun 2008 370, N 1:44–48.
[56] Scalera F., Fulge B., Martens-Lobenhoffer J., Heimburg A., Bode-Boger S. M. Red wine decreases asymmetric dimethylarginine via SIRT1 induction in human endothelial cells Biochem. Biophys. Res. Commun 2009 390, N 3:703–709.
[57] Mukherjee S., Lekli I., Gurusamy N., Bertelli A. A., Das D. K. Expression of the longevity proteins by both red and white wines and their cardioprotective components, resveratrol, tyrosol, and hydroxytyrosol Free Radic. Biol. Med 2009 46, N 5:573–578.
[58] Yang S. R., Wright J., Bauter M., Seweryniak K., Kode A., Rahman I. Sirtuin regulates cigarette smoke-induced proinflammatory mediator release via RelA/p65 NF-kappaB in macrophages in vitro and in rat lungs in vivo: implications for chronic inflammation and aging Am. J. Physiol. Lung Cell Mol. Physiol 2007 292, N 2 L567–576.
[59] Caito S., Rajendrasozhan S., Cook S., Chung S., Yao H., Friedman A. E., Brookes P. S., Rahman I. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress FASEB J 2010 24, N 9:3145–3159.
[60] Arunachalam G., Yao H., Sundar I. K., Caito S., Rahman I. SIRT1 regulates oxidantand cigarette smoke-induced eNOS acetylation in endothelial cells: role of resveratrol Biochem. Biophys. Res. Commun 2010 393, N 1:66–72.
[61] Wang G. L., Fu Y. C., Xu W. C., Feng Y. Q., Fang S. R., Zhou X. H. Resveratrol inhibits the expression of SREBP1 in cell model of steatosis via Sirt1-FOXO1 signaling pathway Biochem. Biophys. Res. Commun 2009 380, N 3:644–649.
[62] Amat R., Solanes G., Giralt M., Villarroya F. SIRT1 is involved in glucocorticoid-mediated control of uncoupling protein-3 gene transcription J. Biol. Chem 2007 282, N 47:34066– 34076.
[63] Chaudhary N., Pfluger P. T. Metabolic benefits from Sirt1 and Sirt1 activators Curr. Opin. Clin. Nutr. Metab. Care 2009 12, N 4:431–437.
[64] You M., Cao Q., Liang X., Ajmo J. M., Ness G. C. Mammalian sirtuin 1 is involved in the protective action of dietary saturated fat against alcoholic fatty liver in mice J. Nutr 2008 138, N 3:497–501.
[65] Jing E., Gesta S., Kahn C. R. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation Cell Metab 2007 6, N 2:105–114.
[66] Bae N. S., Swanson M. J., Vassilev A., Howard B. H. Human histone deacetylase SIRT2 interacts with the homeobox transcription factor HOXA10 J. Biochem 2004 135, N 6:695–700.
[67] Black J. C., Mosley A., Kitada T., Washburn M., Carey M. The SIRT2 deacetylase regulates autoacetylation of p300 Mol. Cell 2008 32, N 3:449–455.
[68] Inoue T., Hiratsuka M., Osaki M., Oshimura M. The molecular biology of mammalian SIRT proteins: SIRT2 in cell cycle regulation Cell Cycle 2007 6, N 9:1011–1018.
[69] Peck B., Chen C. Y., Ho K. K., Di Fruscia P., Myatt S. S., Coombes R. C., Fuchter M. J., Hsiao C. D., Lam E. W. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2 Mol. Cancer Ther 2010 9, N 4:844– 855.
[70] Hallows W. C., Lee S., Denu J. M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases Proc. Natl Acad. Sci. USA 2006 103, N 27:10230–10235.
[71] Yang Y., Cimen H., Han M. J., Shi T., Deng J. H., Koc H., Palacios O. M., Montier L., Bai Y., Tong Q., Koc E. C. NAD+-dependent deacetylase SIRT3 regulates mitochondrial protein synthesis by deacetylation of the ribosomal protein MRPL10 J. Biol. Chem 2010 285, N 10:7417–7429.
[72] Schlicker C., Gertz M., Papatheodorou P., Kachholz B., Becker C. F., Steegborn C. Substrates and regulation mechanisms for the human mitochondrial sirtuins Sirt3 and Sirt5 J. Mol. Biol 2008 382, N 3:790–801.
[73] Kanfi Y., Peshti V., Gil R., Naiman S., Nahum L., Levin E., Kronfeld-Schor N., Cohen H. Y. SIRT6 protects against pathological damage caused by diet-induced obesity Aging Cell 2010 9, N 2:162–173.
[74] McCord R. A., Michishita E., Hong T., Berber E., Boxer L. D., Kusumoto R., Guan S., Shi X., Gozani O., Burlingame A. L., Bohr V. A., Chua K. F. SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair Aging (Albany NY) 2009 1, N 1:109–121.
[75] Van Gool F., Galli M., Gueydan C., Kruys V., Prevot P.P., Bedalov A., Mostoslavsky R., Alt F. W., De Smedt T., Leo O. Intracellular NAD levels regulate tumor necrosis factor protein synthesis in a sirtuin-dependent manner Nat. Med 2009 15, N 2 P. 206–210.
[76] Shi T., Wang F., Stieren E., Tong Q. SIRT3, a mitochondrial sirtuin deacetylase, regulates mitochondrial function and thermogenesis in brown adipocytes J. Biol. Chem 2005 280, N 14 P. 13560–13567.
[77] Escande C., Chini C. C., Nin V., Dykhouse K. M., Novak C. M., Levine J., van Deursen J., Gores G. J., Chen J., Lou Z., Chini E. N. Deleted in breast cancer-1 regulates SIRT1 activity and contributes to high-fat diet-induced liver steatosis in mice J. Clin. Invest 2010 120, N 2:545–558.
[78] Han Y., Jin Y. H., Kim Y. J., Kang B. Y., Choi H. J., Kim D. W., Yeo C. Y., Lee K. Y. Acetylation of Sirt2 by p300 attenuates its deacetylase activity Biochem. Biophys. Res. Commun 2008 375, N 4:576–580.
[79] Cohen H. Y., Miller C., Bitterman K. J., Wall N. R., Hekking B., Kessler B., Howit K. T., Gorospe M., de Cabo R., Sinclair D. A. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase Science 2004 305, N 5682:390–392.
[80] Nedachi T., Kadotani A., Ariga M., Katagiri H., Kanzaki M. Ambient glucose levels qualify the potency of insulin myogenic actions by regulating SIRT1 and FoxO3a in C2C12 myocytes Am. J. Physiol. Endocrinol. Metab 2008 294, N 4 E668–678.
[81] Nasrin N., Kaushik V. K., Fortier E., Wall D., Pearson K. J., de Cabo R., Bordone L. JNK1 phosphorylates SIRT1 and promotes its enzymatic activity PLoS One 2009 4, N 12:e8414.
[82] Denu J. M. Vitamin B3 and sirtuin function Trends Biochem. Sci 2005 30, N 9:479–483.
[83] Imai S. The NAD World: a new systemic regulatory network for metabolism and aging – Sirt1, systemic NAD biosynthesis, and their importance Cell Biochem. Biophys 2009 53, N 2:65–74.
[84] Prusty D., Mehra P., Srivastava S., Shivange A. V., Gupta A., Roy N., Dhar S. K. Nicotinamide inhibits Plasmodium falciparum Sir2 activity in vitro and parasite growth FEMS Microbiol. Lett 2008 282, N 2:266–272.
[85] Schmidt M. T., Smith B. C., Jackson M. D., Denu J. M. Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation J. Biol. Chem 2004 279, N 38:40122–40129.
[86] Liu D., Gharvi R., Pitta M., Gleichmann M., Mattson M. P. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons Neuromolecular Med 2009 11, N 1:28–42.
[87] Khan J. A., Forouhar F., Tao X., Tong L. Nicotinamide adenine dinucleotide metabolism as an attractive target for drug discovery Expert Opin. Ther. Targets 2007 11, N 5:695–705.
[88] Yang T., Sauve A. A. NAD metabolism and sirtuins: metabolic regulation of protein deacetylation in stress and toxicity AAPS J 2006 8, N 4:632–643