Biopolym. Cell. 2011; 27(6):480-498.
Дискусії
«Фундаментальна біологія вийшла на плато» – розвиток уявлень
- Інститут молекулярної біології і генетики НАН України
Вул. Академіка Заболотного, 150, Київ, Україна, 03680
Abstract
Розвивається уявлення про внутрішньоклітинний транспорт продуктів меатболізму, яке формується у вигляді двох складових. Першу в загальному вигляді представлено у попередній публікації, де обгрунтовано положення про те, що клітинний метаболізм локалізується і реалізується не на нерухливих структурах, а на енергійно рухливих (перважно поступально – «нишпорячи») мікровезикулах. У даній роботі продемонстровано, що за додавання до мезенхімальних стовбурових клітин тетразолію на поверхні мікровезикул, які активно рухаються, відкладається формазан. Цей процес відслідковано у часі та показано в динаміці. Оскільки утворення формазану є ознакою метаболізму, то його формування на везикулах експериментально доводить наявність процесів метаболізму саме на поверхні рухливих структур. Другу складову представлено як гіпотетичну. Вона базується на літературних даних про внутрішньоклітинні електропотенціали та розрахунках їхньої можливої участі у прецизійному перенесенні продуктів метаболізму.
Keywords: клітинний метаболізм, мікровезикули, мезенхімальні стовбурові клітини, внутрішньоклітинні електропотенціали
Повний текст: (PDF, російською)
Supplementary data
References
[1]
Kordium V. A., AndrienkoV. I., Maslova O. A., Shuvalova N. S., Irodov D. M., Ruban T. A., Sukhorada E. M., Likhacheva L. I., Shpilevaya S. P. Fundamental gap of fundamental biology Biopolym. Cell 2011 27, N 3 P. 235–245.
[2]
Roche Applied Science «Biochemical Pathways» wall chart / Third edition.
[3]
Mellman I., Fuchs R., Helenius A. Acidification of the endocytic and exocytic pathways Annu. Rev. Biochem 1986 55 P. 663–700.
[4]
Braulke T., Bonifacino J. S. Sorting of lysosomal proteins Biochim. Biophys. Acta 2009 1793, N 4 P. 605–614.
[5]
Lam S. K., Yoda N., Schekman R. A vesicle carrier that mediates peroxisome protein traffic from the endoplasmic reticulum Proc. Natl Acad. Sci. USA 2010 107, N 50 P. 21523–21528.
[6]
Rohn W. M., Rouille Y., Waguri S., Hoflack B. Bi-directional trafficking between the trans-Golgi network and the endosomal/lysosomal system J. Cell Sci 2000 113, Pt 12 P. 2093–2101.
[7]
Gu F., Crump C. M., Thomas G. Trans-Golgi network sorting Cell Mol. Life Sci 2001 58, N 8 P. 1067–1084.
[8]
van Meel E., Klumperman J. Imaging and imagination: understanding the endo-lysosomal system Histochem. Cell Biol 2008 129, N 3 P. 253–266.
[9]
Smith F. G. The mechanism of the tetrazolium reaction in corn embryos Plant. Physiol 1952 27, N 3 P. 445–456.
[10]
Liu Y., Peterson D. A., Kimura H., Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction J. Neurochem 1997 69, N 2 P. 581–593.
[11]
Nikkhah G., Tonn J. C., Hoffmann O., Kraemer H. P., Darling J. L., Schonmayr R., Schachenmayr W. The MTT assay for chemosensitivity testing of human tumors of the central nervous system. Part I: Evaluation of test-specific variables J. Neurooncol 1992 13, N 1 P. 1–11.
[12]
Takahashi S., Abe T., Gotoh J., Fukuuchi Y. Substratedependence of reduction of MTT: a tetrazolium dye differs in cultured astroglia and neurons Neurochem. Int 2002 40, N 5 P. 441–448.
[13]
Gabaldon T., Huynen M. A. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism PLoS Comput. Biol 2007 3, N 11 P. e219.
[14]
Holt I. J. Mitochondrial DNA replication and repair: all a flap Trends Biochem. Sci 2009 34, N 7 P. 358–365.
[15]
Johnson D. T., Harris R. A., French S., Blair P. V., You J., Bemis K. G., Wang M., Balaban R. S. Tissue heterogeneity of the mammalian mitochondrial proteome Am. J. Physiol. Cell Physiol 2007 292, N 2 P. C689–C697.
[16]
Thiele I., Price N. D., Vo T. D., Palsson B. O. Candidate metabolic network states in human mitochondria. Impact of diabetes, ischemia, and diet J. Biol. Chem 2005 280, N 12 P. 11683– 11695.
[17]
Zorov D. B., Krasnikov B. F., Kuzminova A. E., Vysokikh M. Yu., Zorova L. D. Mitochondria revisited. Alternative functions of mitochondria Biosci. Rep 1997 17, N 6 P. 507–520.
[19]
Benard G., Rossignol R. Ultrastructure of the mitochondrion and its bearing on function and bioenergetics Antioxid. Redox Signal 2008 10, N 8 P. 1313–1342.
[20]
Collins T. J., Berridge M. J., Lipp P., Bootman M. D. Mitochondria are morphologically and functionally heterogeneous within cells EMBO J 2002 21, N 7 P. 1616–1627.
[21]
Palmer M. J., Mahajan V. S., Trajman L., Lauffenburger D. A., Chen J. Perspectives on the quantitative immunobiology of the IL-7 signaling network Cell. Mol. Immunol 2008 5, N 2 P. 79–89.
[22]
Metzler D. E. Biochemistry / 2nd edit New York: Acad. press, 2001 Vol.1 940 p.
[23]
Lin J. X., Migone T. S., Tsang M., Friedmann M., Weatherbee J. A., Zhou L., Yamauchi A., Bloom E. T., Mietz J., John S., Warren J. The role of shared receptor motifs and common Stat proteins in the generation of cytokine pleiotropy and redundancy by IL2, IL-4, IL-7, IL-13, and IL-15 Immunity 1995 2, N 4 P. 331–339.
[24]
Mayeux P., Billat C., Jacquot R. Murine erythroleukaemia cells (Friend cells) possess high-affinity binding sites for erythropoietin FEBS Lett 1987 211, N 2 P. 229–233.
[25]
Sawyer S. T., Krantz S. B., Luna J. Identification of the receptor for erythropoietin by cross-linking to Friend virus-infected erythroid cells Proc. Natl Acad. Sci. USA 1987 84, N 11 P. 3690–3694.
[26]
D'Andrea A. D., Lodish H. F., Wong G. G. Expression cloning of the murine erythropoietin receptor Cell 1989 57, N 2 P. 277–285.
[27]
Fukunaga R., Ishizaka-Ikeda E., Nagata S. Purification and characterization of the receptor for murine granulocyte colony-stimulating factor J. Biol. Chem 1990 265, N 23 P. 14008–14015.
[28]
Gearing D. P., King J. A., Gough N. M., Nicola N. A. Expression cloning of a receptor for human granulocyte-macrophage colony-stimulating factor EMBO J 1989 8, N 12 P. 3667– 3676.
[29]
Hatakeyama M., Mori H., Doi T., Taniguchi T. A restricted cytoplasmic region of IL-2 receptor beta chain is essential for growth signal transduction but not for ligand binding and internalization Cell 1989 59, N 5 P. 837–845.
[30]
Mita S., Harada N., Naomi S., Hitoshi Y., Sakamoto K., Akagi M., Tominaga A., Takatsu K. Receptors for T cell-replacing factor/interleukin 5. Specificity, quantitation, and its implication J. Exp. Med 1988 168, N 3 P. 863–878.
[31]
Armitage R. J., Ziegler S. F., Friend D. J., Park L. S., Fanslow W. C. Identification of a novel low-affinity receptor for human interleukin-7 Blood 1992 79, N 7 P. 1738–1745.
[32]
Pathak M. A., Matrisian L. M., Magun B. E., Salmon S. E. Effect of epidermal growth factor on clonogenic growth of primary human tumor cells Int. J. Cancer 1982 30, N 6 P. 745–750.
[33]
Reyes C. D., Petrie T. A., Garca A. J. Mixed extracellular matrix ligands synergistically modulate integrin adhesion and signaling J. Cell. Physiol 2008 217, N 2 P. 450–458.
[34]
Barker T. H. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine Biomaterials 2011 32, N 18 P. 4211–4214.
[35]
Uckun F. M., Dibirdik I., Smith R., Tuel-Ahlgren L., ChandanLanglie M., Schieven G. L., Waddick K. G., Hanson M., Ledbetter J. A. Interleukin 7 receptor ligation stimulates tyrosine phosphorylation, inositol phospholipid turnover, and clonal proliferation of human B-cell precursors Proc. Natl Acad. Sci. USA 1991 88, N 9 P. 3589–3593.
[36]
Mustelin T., Vang T., Bottini N. Protein tyrosine phosphatases and the immune response Nat. Rev. Immunol 2005 5, N 1 P. 43–57.
[37]
King M. P., Attardi G. Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation Science 1989 246, N 4929 P. 500–503.
[38]
Gajewski C. D., Yang L., Schon E. A., Manfredi G. New insights into the bioenergetics of mitochondrial disorders using intracellular ATP reporters Mol. Biol. Cell 2003 14, N 9 P. 3628– 3635.
[39]
Fizicheskiy entsiklopedicheskiy slovar' Moskva: Sovetskaya entsiklopediya, 1966 Vol. 5.
[40]
Linnane A. W., Kios M., Vitetta L. Healthy aging: regulation of the metabolome by cellular redox modulation and prooxidant signaling systems: the essential roles of superoxide anion and hydrogen peroxide Biogerontology 2007 8, N 5 P. 445–467.
[41]
Grabe M., Oster G. Regulation of organelle acidity J. General Physiol 2001 117, N 4 P. 329–344.
[42]
Reers M., Smiley S. T., Mottola-Hartshorn C., Chen A., Lin M., Chen L. B. Mitochondrial membrane potential monitored by JC-1 dye Methods Enzymol 1995 260 P. 406–417.
[43]
Kuznetsov A. V., Margreiter R. Heterogeneity of mitochondria and mitochondrial function within cells as another level of mitochondrial complexity Int. J. Mol. Sci 2009 10, N 4 P. 1911– 1929.
[44]
Wang W., Fang H., Groom L., Cheng A., Zhang W., Liu J., Wang X., Li K., Han P., Zheng M., Yin J., Wang W., Mattson M. P., Kao J. P., Lakatta E. G., Sheu S. S., Ouyang K., Chen J., Dirksen R. T., Cheng H. Superoxide flashes in single mitochondria Cell 2008 134, N 2 P. 279–290.
[45]
Capaldi R. A., Aggeler R., Gilkerson R., Hanson G., Knowles M., Marcus A., Margineantu D., Marusich M., Murray J., Oglesbee D., Remington S. J., Rossignol R. A replicating module as the unit of mitochondrial structure and functioning Biochim. Biophys. Acta 2002 1555, N 1–3 P. 192–195.
[46]
Kordium V. A. Nasha «shagrenevaya kozha» – eto nasha problema. Nam ee i reshat' Kiev: Logos, 2006 264 p.
[47]
Mironov S. L., Symonchuk N. ER vesicles and mitochondria move and communicate at synapses J. Cell Sci 2006 119, Pt 23 P. 4926–4934.
[48]
Williamson D. H., Lund P., Krebs H. A. The redox state of free nicotinamide-adenine dinucleotide in the cytoplasm and mitochondria of rat liver Biochem. J 1967 103, N 2 P. 514–527.
[49]
Good M. C., Zalatan J. G., Lim W. A. Scaffold proteins: hubs for controlling the flow of cellular information Science 2011 332, N 6030 P. 680–686.
[50]
Zhang W., Sloan-Lancaster J., Kitchen J., Trible R. P., Samelson L. E. LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation Cell 1998 92, N 1 P. 83–92.