Biopolym. Cell. 2011; 27(4):328-333.
Дискусії
Рекомбінація і динаміка мобільних генетичних елементів у природних популяціях. Бачення дрозофіліста
1Козерецька І. А.
  1. Навчально-науковий центр «Інститут біології»
    Київського національного університету імені Тараса Шевченка
    вул. Володимирська, 64/13, Київ, Україна, 01601

Abstract

Викладено уявлення про те, що процеси кросинговеру та динаміки мобільних генетичних елементів перебувають у тісному взаємозв’язку. Поведінка мобільних елементів геному впливає на процеси гомологічної рекомбінації як безпосередньо в момент активації, так і внаслідок змін, що відбуваються в геномах у результаті активного переміщення автономних нуклеотидних послідовностей.
Keywords: рекомбінація, мобільні генетичні елементи, дрозофіла

References

[1] Morgan T. H. Chromosomes and associative inheritance Science 1911 34, N 880 P. 636–638.
[2] Ilyin Yu. V., Tchurikov N. A., Ananiev E. V., Ryskov A. P., Yenikopolov G. N., Limborska S. A., Maleeva N. E., Gvozdev V. A., Georgiev G. P. Studies on the DNA fragments of mammals and Drosophila containing structural genes and adjacent sequences Cold Spring Harb. Symp. Quant Biol 1978 42, Pt 2 P. 959–969.
[3] Finnegan D. J., Rubin G. M., Young M. W., Hogness D. S. Repeated gene families in Drosophila melanogaster Cold Spring Harb. Symp. Quant Biol 1978 42, Pt 2 P. 1053–1063.
[4] Kazazian H. H. Jr. Mobile elements: drivers of genome evolution Science 2004 303, N 5664 P. 1626–1632.
[5] Morgan T. H. No crossing over in the male of drosophila of genes in the second and third pairs of chromosomes Biol. Bull 1914 26, N 4 P. 195–204.
[6] Kidwell M. G. Evolution of hybrid dysgenesis determinants in Drosophila melanogaster Proc. Natl Acad. Sci. USA 1983 80, N 6 P. 1655–1659.
[7] Thomas S. E., McKee B. D. Meiotic pairing and disjunction of mini-X chromosomes in Drosophila is mediated by 240-bp rDNA repeats and the homolog conjunction proteins SNM and MNM Genetics 2007 177, N 2 P.785–799.
[8] McKim K. S., Hayashi-Hagihara A. mei-W68 in Drosophila melanogaster encodes a Spo11 homolog: evidence that the mechanism for initiating meiotic recombination is conserved Genes Dev 1998 12, N 18 P. 2932–2942.
[9] McKim K. S., Jang J. K., Manheim E. A. Meiotic recombination and chromosome segregation in Drosophila female Annu. Rev. Genet 2002 36:205–232.
[10] McKim K. S., Green-Marroquin B. L., Sekelsky J. J., Chin G., Steinberg C., Khodosh R., Hawley R. S. Meiotic synapsis in the absence of recombination Science 1998 279, N 5352 P. 876–878.
[11] Jang J. K., Sherizen D. E., Bhagat R., Manheim E. A., McKim K. S. Relationship of DNA double-strand breaks to synapsis in Drosophila J. Cell Sci 2003 116, Pt 15 P. 3069–3077.
[12] Anderson J. A., Gilliland W. D., Langley G. H. Molecular population genetics and evolution of Drosophila meiosis genes Genetics 2009 181, N 1 P. 177–185.
[13] Ashburner M., Golic K. G., Hawley R. S. Drosophila: A laboratory handbook New York: Cold Spring Harbor Lab. Press, 2004 P. 481–606.
[14] Bartolome C., Maside X., Charlesworth B. On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster Mol. Biol. Evol 2002 19, N 6 P. 926–937.
[15] Rizzon C., Marais G., Gouy M., Biemont C. Recombination rate and the distribution of transposable elements in the Drosophila melanogaster genome Genome Res 2002 12, N 3:400– 407.
[16] Hoogland C., Biemont C. Chromosomal distribution of transposable elements in Drosophila melanogaster: test of the ectopic recombination model for maintenance of insertion site number Genetics 1996 144, N 1 P. 197–204.
[17] Hughes S. E., Hawley R. S. Heterohromatin: a rapidly evolving species barrier PLoS Biol 2009 7, N 10 P. e1000233.
[18] Ellermeier C., Higuchi E. C., Phadnis N., Holm L., Geelhood J. L., Thon G., Smith G. R. RNAi and heterochromatin repress centromeric, meiotic recombination Proc. Natl Acad. Sci. USA 2010 107, N 19 P. 8701–8705.
[19] Slotkin R. K., Martienssen R. Transposable elements and the epigenetic regulation of the genome Nat. Rev. Genet 2007 8, N 4 P. 272–285.
[20] Ives P. T. The importance of mutation rate genes in evolution Evolution 1950 4, N 3 P. 236–252.
[21] Yamaguchi O., Mukai T. Variation of spontaneous occurrence rates of chromosomal aberrations in the second chromosomes of Drosophila melanogaster Genetics 1974 78, N 4 P. 1209– 1221.
[22] Zabalou S., Alahiotis S. N., Yannopoulos G. A three-season comparative analysis of the chromosomal distribution of P and hobo mobile elements in a natural population of Drosophila melanogaster Hereditas 1994 120, N 2 P. 127–140.
[23] Caceres M., Ranz J. M., Barbadilla A., Long M., Ruiz A. Generation of a widespread Drosophila inversion by a transposable elements Science 1999 285, N 5426 P. 415–418.
[24] Montgomery E. A., Huang S. M., Langley C. H., Judd B. H. Chromosome rearrangement by ectopic recombination in Drosophila melanogaster: genome structure and evolution Genetics 1991 129, N 4 P. 1085–1098.
[25] Pawlowski W. P., Cande W. Z. Coordinating the events of the meiotic prophase Trends Cell Biol 2005 15, N 12 P. 674–681.
[26] Quesneville H., Bergman C. M., Andrieu O., Autard D., Nouaud D., Ashburner M., Anxolabehere D. Combined evidence annotation of transposable elements in genome sequences PLoS Comput. Biol 2005 1, N 2 P. e22.
[27] Le Rouzic A., Deceliere G. Models of the population genetics of transposable elements Genet. Res 2005 85, N 3 P. 171–181.
[28] Petrov D. A., Aminetzach Y. T., Davis J. C., Bensasson D., Hirsh A. E. Size matters: non-LTR retrotransposable elements and ectopic recombination in Drosophila Mol. Biol. Evol 2003 20, N 6 P. 880–892.
[29] Lee Y. C., Langley C. H. Transposable elements in natural populations of Drosophila melanogaster Philos. Trans. R. Soc. Lond. B. Biol. Sci 2010 365, N 1544 P. 1219–1228.
[30] Rozhkov N. V., Aravin A. A., Zelentsova E. S., Schostak N. G., Sachidanandam R., McCombie W. R., Hannon G. J., Evgen'ev M. B. Small RNA-based silencing strategies for transposons in the process of invading Drosophila species RNA 2010 16, N 8:1634–1645.
[31] Moshkovich N., Lei E. P. HP1 recruitment in the absence of argonaute proteins in Drosophila PLoS Genet 2010 6, N 3 P. e1000880.
[32] Engels W. R., Johnson-Schlitz D. M., Eggleston W. B., Sved J. High-frequency P element loss in Drosophila is homolog dependent Cell 1990 62, N 3 P. 515–525.
[33] Staeva-Vieira E, Yoo S, Lehmann R. An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control EMBO J 2003 22, N 21 P. 5863–5874.
[34] McVey M., Adams M., Staeva-Vieira E., Sekelsky J. J. Evidence for multiple cycles of strand invasion during repair of doublestrand gaps in Drosophila Genetics 2004 167, N 2 P. 699– 705.
[35] Haddrill P. R., Halligan D. L., Tomaras D., Charlesworth B. Reduced efficacy of selection in regions of the Drosophila genome that lack crossing over Genome Biol 2007 8, N 2 R18.
[36] Sniegowski P. D., Charlesworth B. Transposable element numbers in cosmopolitan inversions from a natural population of Drosophila melanogaster Genetics 1994 137, N 3 P. 815– 827.
[37] Haber J. E. Partners and pathwaysrepairing a double-strand break Trends Genet 2000 16, N 6:259–264.
[38] Potter S. S., Brorein W. J. Jr., Dunsmuir P., Rubin G. M. Transposition of elements of the 412, copia and 297 dispersed repeated gene families in Drosophila Cell 1979 17, N 2:415–427.
[39] Maisonhaute C., Ogereau D., Hua-Van A., Capy P. Amplification of the 1731 LTR retropransposon in Drosophila melanogaster cultured cells: origin of neocopies and impact on the genome Gene 2007 393, N 1–2 P. 116–126.
[40] Inversion polymorphism in Drosophila / Eds C. B. Krimbas, J. R. Powell Boca Raton: CRC Press, 1991 560 p.
[41] Hasson E., Eanes W. F. Contrasting histories of three gene regions associated with In(3L)Payne of Drosophila melanogaster Genetics 1996 144, N 4 P. 1565–1575.
[42] Ananiev E. V., Barsky V. E. Elektronno-mikroskopicheskaia karta politennykh khromosom sliunnykh zhelez drosophily: D. melanogaster Moskva: Nauka, 1985 85 p.
[43] Tweedie S., Ashburner M., Falls K., Leyland P., McQuilton P., Marygold S., Millburn G., Osumi-Sutherland D., Schroeder A., Seal R., Zhang H., FlyBase Consortium. FlyBase: enhancing Drosophila gene ontology annotations Nucl. Acids Res 2009 37 D555–D559.
[44] Bergman C. M, Quesneville H., Anxolabehere D., Ashburner M. Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome Genome Biol 2006 7, N 11 P. R112.
[45] Sherizen D., Jang J. K., Bhagat R., Kato N., McKim K. S. Meiotic recombination in Drosophila females depends on chromosome continuity between genetically defined boundaries Genetics 2005 169, N 2: 767-781.
[46] Quesneville H., Nouaud D., Anxolabehere D. Recurrent recruitment of the THAP DNA-binding domain and molecular domestication of the P-transposable element Mol. Biol. Evol 2005 22, N 3:741–746.
[47] Gvozdev V. A., Kaidanov L. Z. Genomic variability caused by transposition of mobile elements and fitness of individuals in Drosophila melanogaster Zhur. Obshch. Biol 1986 47, N 1:51–63.
[48] Golubovsky MD, Zakharov IK, Sokolova OA. Analysis of instability of the yellow gene alleles isolated from natural Drosophila populations during the period of mutability outburst. Genetika. 1987; 23(9):1595-603.
[49] Biemont C., Vieira C., Hoogland C., Cizeron G., Loevenbruck C., Arnault C., Carante J. P. Maintenance of treansposable elelemts copy number in natural populations of Drosophila melanogaster and D. simulans Genetica 1997 100, N 1–3 P. 161– 166.
[50] Kaminker J. S, Bergman C. M, Kronmiller B., Carlson J., Svirskas R., Patel S., Frise E., Wheeler D. A., Lewis S. E., Rubin G. M., Ashburner M., Celniker S. E. The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective Genome Biol. 2002;3(12):RESEARCH0084
[51] Rho M., Choi J.-H., Kim S., Lynch M., Tang H. De novo identification of LTR retrotransposons in eukaryotic genomes BMC Genomics 2007 8 P. 90.
[52] Le Rouzic A., Deceliere G. Models of the population genetics of transposable elements Genet. Res 2005 85, N 3 P. 171– 181.
[53] Caspi A., Pachter L. Identification of transposable elements using multiple alignments of related genomes Genome Res 2006 16, N 2:260–270.
[54] Bartolome C., Maside X. The lack of recombination drives the fixation of transposable elements on the fourth chromosome of Drosophila melanogaster Genet. Res 2004 83, N 2 P. 91– 100.
[55] Smith D., Wohlgemuth J., Calvi B. R., Franklin I., Gelbart W. M. hobo enhancer trapping mutagenesis in Drosophila reveals an insertion specificity different from P elements Genetics 1993 135, N 4 P. 1063–1076.
[56] Vereshchagina N. M., Iliadi I. K., Nikitich O. A. Comparative studies of P- and hobo-element activity, fitness components and recombination parameters in two natural populations of Drosophila melanogaster in Moldova Hereditas 1994120, N 2: 91–98.
[57] Kozeretska I. A., Procenko O. V., Demidov S. V. Recombination events in offspring of Drosophila flies collected from natural populations in Ukraine Problemy Ekologicheskoy i Meditsinskoy Genetiki i Klinicheskoy Immunologii 2009 3, N 90 :35–43.
[58] Feschotte C., Pritham E. J. DNA transposons and the evolution of eukaryotic genomes Annu. Rev. Genet 2007 41 P. 331– 368.