Biopolym. Cell. 2011; 27(2):93-106.
Огляди
Роль стресу у серцевій патології – основа міжстатевих патофізіологічгих розбіжностей
1Хеффер М., 2Зибар Л., 3Вильетич Б., 4Макарович З.
  1. факультет медичної біології,
    Осієцький університет імені Йосипа Юрая Штросмаєра
    вул. Гутлерова, 4, Осієк, Хорватія, 3100
  2. відділ патофізіології,
    Осієцький університет імені Йосипа Юрая Штросмаєра
    вул. Гутлерова, 4, Осієк, Хорватія, 3100
  3. факультет хімії, біохімії та клінічної хімії,
    Осієцький університет імені Йосипа Юрая Штросмаєра
    вул. Гутлерова, 4, Осієк, Хорватія, 3100
  4. відділення кардіології, клінічної лікарні м. Осієк
    вул. Гутлерова, 4, Осієк, Хорватія, 3100

Abstract

За останнє століття сучасне суспільство зазнало багаточисельних змін у способі життя (звичках, харчуванні, навантаженнях, фізичній активності), а також під впливом чинників довкілля. Як біологічний вид ми не дуже добре адаптувалися до нових умов. Вищі рівні гормонів стресу спричиняють різні ефекти, поступово змінюється чутливість адренергічних, глюкокортикоїдних і інсулінових рецепторів. Усі ці зміни взаємопов’язані і залежно від генетичних і екологічних факторів призводять до таких метаболічних синдромів, як ожиріння, цукровий діабет, серцева недостатність тощо. Оскільки відповідь на стрес залежить і від статі, потрібно враховувати можливу різницю у патофізіології серцевої недостатності у чоловіків і жінок. Протягом багатьох років функції вегетативної нервової системи невірно трактувалися сучасною медициною, що відбилося на терапії серцевої недостатності і гіпертензії. Вплив стресу на серцеву функцію у перід до і після менопаузи різниться. У жінок у постменопаузі значно підвищується ризик серцево-судинних захворювань, який визначається зниженням захисної функції жіночого гормонального циклу. Глибше вивчення молекулярних механізмів дії ядерних рецепторів стероїдних гормонів, факторів транскрипції, які беруть участь у ремоделюванні серця, перехресних адренергічних сигнальних шляхів та їхніх ефекторних молекул призведе до постановки нових задач для гендер-специфічної терапії.
Keywords: серцева недостатність, стрес, адренергічні рецептори, статева специфічність

References

[1] Armour J. A. Potential clinical relevance of the «little brain» on the mammalian heart Exp. Physiol 2008 93, N 2 P. 165– 176.
[2] Cheng Z., Powley T. L., Schwaber J. S., Doyle F. J. 3rd. Vagal afferent innervation of the atria of the rat heart reconstructed with confocal microscopy J. Comp. Neurol 1997 381, N 1 P. 1–17.
[3] Dhein S., van Koppen C. J., Brodde O. E. Muscarinic receptors in the mammalian heart Pharmacol. Res 2001 44, N 3 P. 161–182.
[4] Myslivecek J., Novakova M., Palkovits M., Krizanova O., Kvetnansky R. Distribution of mRNA and binding sites of adrenoceptors and muscarinic receptors in the rat heart Life Sci 2006 79, N 2 P. 112–120.
[5] Wang H., Lu Y.Wang Z. Function of cardiac M3 receptors Auton. Autacoid Pharmacol 2007 27, N 1 P. 1–11.
[6] Wilkinson D. J., Thompson J. M., Lambert G. W., Jennings G. L., Schwarz R. G., Jefferys D., Turner A. G., Esler M. D. Sympathetic activity in patients with panic disorder at rest, under laboratory mental stress, and during panic attacks Arch. Gen. Psychiatry 1998 55, N 6 P. 511–520.
[7] Rumantir M. S., Jennings G. L., Lambert G. W., Kaye D. M., Seals D. R., Esler M. D. The «adrenaline hypothesis» of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension J. Hypertens 2000 18, N 6 P. 717–723.
[8] Morris M. J., Cox H. S., Lambert G. W., Kaye D. M., Jennings G. L., Meredith I. T., Esler M. D. Region-specific neuropeptide Y overflows at rest and during sympathetic activation in humans Hypertension 1997 29, Pt 1 P. 137–143.
[9] Esler M., Kaye D. Measurement of sympathetic nervous system activity in heart failure: the role of norepinephrine kinetics Heart Fail. Rev 2000 5, N 1 P. 17–25.
[10] Wolff D. W., Dang H. K., Liu M. F., Jeffries W. B., Scofield M. A. Distribution of alpha 1-adrenergic receptor mRNA species in rat heart J. Cardiovasc. Pharmacol 1998 32, N 1 P. 117–122.
[11] Jensen B. C., Swigart P. M., Laden M. E., DeMarco T., Hoopes C., Simpson P. C. The alpha-1D is the predominant alpha-1adrenergic receptor subtype in human epicardial coronary arteries J. Am. Coll. Cardiol 2009 54, N 13 P. 1137–1145.
[12] Bylund D. B. Subtypes of alpha 1and alpha 2-adrenergic receptors FASEB J 1992 6, N 3 P. 832–839.
[13] Gauthier C., Tavernier G., Charpentier F., Langin D., Le Marec H. Functional beta3-adrenoceptor in the human heart J. Clin. Invest 1996 98, N 2 P. 556–562.
[14] Ito M., Grujic D., Abel E. D., Vidal-Puig A., Susulic V. S., Lawitts J., Harper M. E., Himms-Hagen J., Strosberg A. D., Lowell B. B. Mice expressing human but not murine beta3-adrenergic receptors under the control of human gene regulatory elements Diabetes 1998 47, N 9 P. 1464–1471.
[15] Preitner F., Muzzin P., Revelli J. P., Seydoux J., Galitzky J., Berlan M., Lafontan M., Giacobino J. P. Metabolic response to various beta-adrenoceptor agonists in beta3-adrenoceptor knockout mice: evidence for a new beta-adrenergic receptor in brown adipose tissue Br. J. Pharmacol 1998 124, N 8 P. 1684–1688.
[16] Granneman J. G. The putative beta 4-adrenergic receptor is a nvel state of the beta1-adrenergic receptor Am. J. Physiol. Endocrinol. Metab 2001 280, N 2 P. E199–202.
[17] Santos I. N., Spadari-Bratfisch R. C. Stress and cardiac beta adrenoceptors Stress 2006 9, N 2 P. 69–84.
[18] Wang W., Zhu W., Wang S., Yang D., Crow M. T., Xiao R. P., Cheng H. Sustained beta1-adrenergic stimulation modulates cardiac contractility by Ca2+/calmodulin kinase signaling pathway Circ. Res 2004 95, N 8 P. 798–806.
[19] Curran J., Hinton M. J., Rios E., Bers D. M., Shannon T. R. Betaadrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase Circ. Res 2007 100, N 3 P. 391–398.
[20] Freestone N. S., Heubach J. F., Wettwer E., Ravens U., Brown D., Kaumann A. J. Beta4-adrenoceptors are more effective than beta1-adrenoceptors in mediating arrhythmic Ca2+ transients in mouse ventricular myocytes Naunyn Schmiedebergs Arch. Pharmacol 1999 360, N 4 P. 445–456.
[21] Zhu W. Z., Zheng M., Koch W. J., Lefkowitz R. J., Kobilka B. K., Xiao R. P. Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes Proc. Natl Acad. Sci. USA 2001 98, N 4 P. 1607–1612.
[22] Pott C., Brixius K., Bundkirchen A., Bolck B., Bloch W., Steinritz D., Mehlhorn U., Schwinger R. H. The preferential beta3adrenoceptor agonist BRL 37344 increases force via beta1-/ beta2-adrenoceptors and induces endothelial nitric oxide synthase via beta3-adrenoceptors in human atrial myocardium Br. J. Pharmacol 2003 138, N 3 P. 521–529.
[23] Sartiani L., De Paoli P., Stillitano F., Aimond F., Vassort G., Mugelli A., Cerbai E. Functional remodeling in post-myocardial infarcted rats: focus on beta-adrenoceptor subtypes J. Mol. Cell. Cardiol 2006 40, N 2 P. 258–266.
[24] Shen Y. T., Cervoni P., Claus T., Vatner S. F. Differences in beta 3-adrenergic receptor cardiovascular regulation in conscious primates, rats and dogs J. Pharmacol. Exp. Ther 1996 278, N 3 P. 1435–1443.
[25] Kaumann A. J. Is there a third heart beta-adrenoceptor? Trends Pharmacol. Sci 1989 10, N 8 P. 316–320.
[26] Kaumann A. J., Lynham J. A. Stimulation of cyclic AMP-dependent protein kinase in rat atria by (–)-CGP 12177 through an atypical beta-adrenoceptor Br. J. Pharmacol 1997 120, N 7 P. 1187–1189.
[27] Hopkins D. A., Armour J. A. Ganglionic distribution of afferent neurons innervating the canine heart and cardiopulmonary nerves J. Auton. Nerv. Syst 1989 26, N 3 P. 213–222.
[28] Quigg M. Distribution of vagal afferent fibers of the guinea pig heart labeled by anterograde transport of conjugated horseradish peroxidase J. Auton. Nerv. Syst 1991 36, N 1 P. 13–24.
[29] Guic M. M., Kosta V., Aljinovic J., Sapunar D., Grkovic I. Characterization of spinal afferent neurons projecting to different chambers of the rat heart Neurosci. Lett 2010 469, N 3 P. 314–318.
[30] Smith H. J., Oriol A., Morch J., McGregor M. Hemodynamic studies in cardiogenic shock: treatment with isoproterenol and metaraminol Circulation 1967 35, N 6 P. 1084–1091.
[31] Bayram M., De Luca L., Massie M. B., Gheorghiade M. Reassessment of dobutamine, dopamine, and milrinone in the management of acute heart failure syndromes Am. J. Cardiol 2005 96, N 6A P. 47G–58G.
[32] van de Borne P., Oren R., Somers V. K. Dopamine depresses minute ventilation in patients with heart failure Circulation 1998 98, N 2 P. 126–131.
[33] Tuttle R. R., Mills J. Dobutamine: development of a new catecholamine to selectively increase cardiac contractility Circ. Res 1975 36, N 1 P. 185–196.
[34] Lambertz H., Meyer J., Erbel R. Long-term hemodynamic effects of prenalterol in patients with severe congestive heart failure Circulation 1984 69, N 2 P. 298–305.
[35] The xamoterol in severe heart failure study group. Xamoterol in severe heart failure The Lancet 1990 336, N 8706 P. 1–6.
[36] O'Connor C. M., Gattis W. A., Uretsky B. F., Adams K. F. Jr., McNulty S. E., Grossman S. H., McKenna W. J., Zannad F., Swedberg K., Gheorghiade M., Califf R. M. Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST) Am. Heart J 1999 138, N 1 P. 78–86.
[37] Felker G. M., Benza R. L., Chandler A. B., Leimberger J. D., Cuffe M. S., Califf R. M., Gheorghiade M., O'Connor C. M. Heart failure etiology and response to milrinone in decompensated heart failure: results from the OPTIME-CHF study J. Am. Coll. Cardiol 2003 41, N 6 P. 997–1003.
[38] Metra M., Eichhorn E., Abraham W. T., Linseman J., Bohm M., Corbalan R., DeMets D., De Marco T., Elkayam U., Gerber M., Komajda M., Liu P., Mareev V., Perrone S. V., Poole-Wilson P., Roecker E., Stewart J., Swedberg K., Tendera M., Wiens B., Bristow M. R. Effects of low-dose oral enoximone administration on mortality, morbidity, and exercise capacity in patients with advanced heart failure: the randomized, double-blind, placebo-controlled, parallel group ESSENTIAL trials Eur. Heart J 2009 30, N 24 P. 3015–3026.
[39] Yamaguchi A., Tanaka M., Naito K., Kimura C., Kobinata T., Okamura H., Ino T., Adachi H. The efficacy of intravenous milrinone in left ventricular restoration Ann. Thorac. Cardiovasc. Surg 2009 15, N 4 P. 233–238.
[40] Chidsey C. A., Braunwald E., Morrow A. G., Mason D. T. Myocardial norepinephrine concentration in man – effects of reserpine and of congestive heart failure New Engl. J. Med 1963 269, N 13 P. 653–658.
[41] Allman K. C., Wieland D. M., Muzik O., Degrado T. R., Wolfe E. R. Jr., Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans J. Am. Coll. Cardiol 1993 22, N 2 P. 368–375.
[42] Bristow M. R., Ginsburg R., Umans V., Fowler M., Minobe W., Rasmussen R., Zera P., Menlove R., Shah P., Jamieson S., Stinson E. B. Beta 1and beta 2-adrenergic-receptor subpopulations in nonfailing and failing human ventricular myocardium: coupling of both receptor subtypes to muscle contraction and selective beta 1-receptor down-regulation in heart failure Circ. Res 1986 59, N 3 P. 297–309.
[43] Brodde O. E. Pathophysiology of the beta-adrenoceptor system in chronic heart failure: consequences for treatment with agonists, partial agonists or antagonists? Eur. Heart J 1991 12, Suppl F P. 54–62.
[44] Bristow M. R., Hershberger R. E., Port J. D., Minobe W., Rasmussen R. Beta 1and beta 2-adrenergic receptor-mediated adenylate cyclase stimulation in nonfailing and failing human ventricular myocardium Mol. Pharmacol 1989 35, N 3 P. 295–303.
[45] Bristow M. R., Hershberger R. E., Port J. D., Gilbert E. M., Sandoval A., Rasmussen R., Cates A. E., Feldman A. M. Betaadrenergic pathways in nonfailing and failing human ventricular myocardium Circulation 1990 82, 2 Suppl P. I12–25.
[46] Bristow M. R., Anderson F. L., Port J. D., Skerl L., Hershberger R. E., Larrabee P., O'Connell J. B., Renlund D. G., Volkman K., Murray J., Feldman A. M. Differences in beta-adrenergic neuroeffector mechanisms in ischemic versus idiopathic dilated cardiomyopathy Circulation 1991 84, N 3 P. 1024–1039.
[47] Cohn J. N., Levine T. B., Olivari M. T., Garberg V., Lura D., Francis G. S., Simon A. B., Rector T. Plasma norepinephrine as a guide to prognosis in patients with chronic congestive heart failure New Engl. J. Med 1984 311, N 13 P. 819–823.
[48] Levine T. B., Francis G. S., Goldsmith S. R., Simon A. B., Cohn J. N. Activity of the sympathetic nervous system and reninangiotensin system assessed by plasma hormone levels and their relationship to hemodynamic abnormalities in congestive heart failure Am. J. Cardiol 1982 49, N 7 P. 1659–1666.
[49] Hasking G. J., Esler M. D., Jennings G. L., Burton D., Johns J. A., Korner P. I. Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity Circulation 1986 73, N 4 P. 615–621.
[50] Kaye D. M., Lefkovits J., Jennings G. L., Bergin P., Broughton A., Esler M. D. Adverse consequences of high sympathetic nervous activity in the failing human heart J. Am. Coll. Cardiol 1995 26, N 5 P. 1257–1263.
[51] Rundqvist B., Elam M., Bergmann-Sverrisdottir Y., Eisenhofer G., Friberg P. Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure Circulation 1997 95, N 1 P. 169–175.
[52] Meredith I. T., Broughton A., Jennings G. L., Esler M. D. Evidence of a selective increase in cardiac sympathetic activity in patients with sustained ventricular arrhythmias New Engl. J. Med 1991 325, N 9 P. 618–624.
[53] Smith-White M. A., Herzog H., Potter E. K. Role of neuropeptide Y Y(2) receptors in modulation of cardiac parasympathetic neurotransmission Regul. Pept 2002 103, N 2–3 P. 105– 111.
[54] Patel K. P., Zhang P. L., Krukoff T. L. Alterations in brain hexokinase activity associated with heart failure in rats Am. J. Physiol 1993 265, N 4 P. R923–R928.
[55] Patel K. P., Zhang K. Neurohumoral activation in heart failure: role of paraventricular nucleus Clin. Exp. Pharmacol. Physiol 1996 23, N 8 P. 722–726.
[56] Milano C. A., Allen L. F., Rockman H. A., Dolber P. C., McMinn T. R., Chien K. R., Johnson T. D., Bond R. A., Lefkowitz R. J. Enhanced myocardial function in transgenic mice overexpressing the beta 2-adrenergic receptor Science 1994 264, N 5158 P. 582–586.
[57] Liggett S. B., Tepe N. M., Lorenz J. N., Canning A. M., Jantz T. D., Mitarai S., Yatani A., Dorn G. W., 2nd. Early and delayed consequences of beta(2)-adrenergic receptor overexpression in mouse hearts: critical role for expression level Circulation 2000 101, N 14 P. 1707–1714.
[58] Engelhardt S., Hein L., Wiesmann F., Lohse M. J. Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice Proc. Natl Acad. Sci. USA 1999 96, N 12 P. 7059–7064.
[59] Du X.-J., Gao X.-M., Wang B., Jennings G. L., Woodcock E. A., Dart A. M. Age-dependent cardiomyopathy and heart failure phenotype in mice overexpressing 2-adrenergic receptors in the heart Cardiovasc. Res 2000 48, N 3 P. 448–454.
[60] Iwase M., Uechi M., Vatner D. E., Asai K., Shannon R. P., Kudej R. K., Wagner T. E., Wight D. C., Patrick T. A., Ishikawa Y., Homcy C. J., Vatner S. F. Cardiomyopathy induced by cardiac Gs alpha overexpression Am. J. Physiol 1997 272, N 1 P. H585–589.
[61] Lader A. S., Xiao Y.-F., Ishikawa Y., Cui Y., Vatner D. E., Vatner S. F., Homcy C. J., Cantiello H. F. Cardiac Gsalpha overexpression enhances L-type calcium channels through an adenylyl cyc lase independent pathway Proc. Natl Acad. Sci. USA 1998 95, N 16 P. 9669–9674.
[62] Antos C. L., Frey N., Marx S. O., Reiken S., Gaburjakova M., Richardson J. A., Marks A. R., Olson E. N. Dilated cardiomyopathy and sudden death resulting from constitutive activation of protein kinase A Circ. Res 2001 89, N 11 P. 997–1004.
[63] Waagstein F., Hjalmarson A. C., Wasir H. S. Apex cardiogram and systolic time intervals in acute myocardial infarction and effects of practolol Br. Heart. J 1974 36, N 11 P. 1109– 1121.
[64] Segev A., Mekori Y. A. The cardiac insufficiency bisoprolol study II Lancet 1999 353, N 9161 P. 1361.
[65] Poole-Wilson P. A. The cardiac insufficiency bisoprolol study II Lancet 1999 353, N 9161 P. 1360–1361.
[66] Poole-Wilson P. A., Swedberg K., Cleland J. G., Di Lenarda A., Hanrath P., Komajda M., Lubsen J., Lutiger B., Metra M., Remme W. J., Torp-Pedersen C., Scherhag A., Skene A. Comparison of carvedilol and metoprolol on clinical outcomes in patients with chronic heart failure in the Carvedilol Or Metoprolol European Trial (COMET): randomised controlled trial Lancet 2003 362, N 9377 P. 7–13.
[67] Selye H. A syndrome produced by diverse nocuous agents Nature 1936 138, N 3479 P. 32.
[68] Day T. A. Defining stress as a prelude to mapping its neurocircuitry: no help from allostasis Prog. Neuropsychopharmacol. Biol. Psychiatry 2005 29, N 8 P. 1195–1200.
[69] Herman J. P., Figueiredo H., Mueller N. K., Ulrich-Lai Y., Ostrander M. M., Choi D. C., Cullinan W. E. Central mechanisms of stress integration: hierarchical circuitry controlling hypothalamo-pituitary-adrenocortical responsiveness Front. Neuroendocrinol 2003 24, N 3 P. 151–180.
[70] Tanoue A., Ito S., Honda K., Oshikawa S., Kitagawa Y., Koshimizu T. A., Mori T., Tsujimoto G. The vasopressin V1b receptor critically regulates hypothalamic-pituitary-adrenal axis activity under both stress and resting conditions J. Clin. Invest 2004 113, N 2 P. 302–309.
[71] Ross M. E., Evinger M. J., Hyman S. E., Carroll J. M., Mucke L., Comb M., Reis D. J., Joh T. H., Goodman H. M. Identification of a functional glucocorticoid response element in the phenylethanolamine N-methyltransferase promoter using fusion genes introduced into chromaffin cells in primary culture J. Neurosci 1990 10, N 2 P. 520–530.
[72] Tai T. C., Claycomb R., Her S., Bloom A. K., Wong D. L. Glucocorticoid responsiveness of the rat phenylethanolamine N-methyltransferase gene Mol. Pharmacol 2002 61, N 6 P. 1385–1392.
[73] Wong D. L., Tai T. C., Wong-Faull D. C., Claycomb R., Kvetnansky R. Adrenergic responses to stress: transcriptional and post-transcriptional changes Ann. N. Y. Acad. Sci 2008 1148, N 1 P. 249–256.
[74] Fuller R. W., Hunt J. M. Inhibition of phenethanolamine N-methyl transferase by its product, epinephrine Life Sci 1967 6, N 10 P. 1107–1112.
[75] Marti O., Gavalda A., Jolin T., Armario A. Effect of regularityof exposure to chronic immobilization stress on the circadian pattern of pituitary adrenal hormones, growth hormone, and thyroid stimulating hormone in the adult male rat Psychoneuroendocrinology 1993 18, N 1 P. 67–77.
[76] Ottenweller J. E., Servatius R. J., Natelson B. H. Repeated stress persistently elevates morning, but not evening, plasma corticosterone levels in male rats Physiol. Behav 1994 55, N 2 P. 337–340.
[77] Fleshner M., Deak T., Spencer R. L., Laudenslager M. L., Watkins L. R., Maier S. F. A long-term increase in basal levels of corticosterone and a decrease in corticosteroid-binding globulin after acute stressor exposure Endocrinology 1995 136, N 12 P. 5336–5342.
[78] Liu X., Serova L., Kvetnansky R., Sabbah E. L. Identifying the stress trancriptome in the adrenal medulla following acute and repeated immobilization Ann.N. Y. Acad. Sci 2008 1148 P. 1–28.
[79] Eisenhofer G., Friberg P., Rundqvist B., Quyyumi A. A., Lambert G., Kaye D. M., Kopin I. J., Goldstein D. S., Esler M. D. Cardiac sympathetic nerve function in congestive heart failure Circulation 1996 93, N 9 P. 1667–1676.
[80] Bassani R. A., de Moraes S. Effects of repeated footshock stress on the chronotropic responsiveness of the isolated pacemaker of the rat: role of beta-2 adrenoceptors J. Pharmacol. Exp. Ther 1988 246, N 1 P. 316–321.
[81] Rahnemaye F., Nourani R., Spadari R. C., De Moraes S. Footshock stress-induced supersensitivity to isoprenaline in the isolated pacemaker of the rat: effect of the compounds RU-38486 and RU-28362 Gen. Pharmacol 1992 23, N 4 P. 787–791.
[82] Marcondes F. K., Vanderlei L. C. M., Lanza L. L. B., SpadariBratfisch R. C. Stress-induced subsensitivity to catecholamines depends on the estrous cycle Can. J. Physiol. Pharmacol 1996 74, N 6 P. 663–699.
[83] Farias-Silva E., Grassi-Kassisse D. M., Wolf-Nunes V., Spadari-Bratfisch R. C. Stress-induced alteration in the lipolytic response to beta-adrenoceptor agonists in rat white adipocytes J. Lipid. Res 1999 40, N 9 P. 1719–1727.
[84] Farias-Silva E., Sampaio-Barros M. M., Amaral M. E., Carneiro E. M., Boschero A. C., Grassi-Kassisse D. M., Spadari-Bratfisch R. C. Subsensitivity to insulin in adipocytes from rats submitted to foot-shock stress Can. J. Physiol. Pharmacol 2002 80, N 8 P. 783–789.
[85] Nikolaev V. O., Moshkov A., Lyon A. R., Miragoli M., Novak P., Paur H., Lohse M. J., Korchev Y. E., Harding S. E., Gorelik J. Beta2-adrenergic receptor redistribution in heart failure changes cAMP compartmentation Science 2010 327, N 5973 P. 1653–1657.
[86] Peter P. S., Brady J. E., Yan L., Chen W., Engelhardt S., Wang Y., Sadoshima J., Vatner S. F., Vatner D. E. Inhibition of p38 alpha MAPK rescues cardiomyopathy induced by overexpressed beta 2-adrenergic receptor, but not beta 1-adrenergic receptor J. Clin. Invest 2007 117, N 5 P. 1335–1343.
[87] Myslivecek J., Tillinger A., Novakova M., Kvetnansky R. Regulation of adrenoceptor and muscarinic receptor gene expression after single and repeated stress Ann. N. Y. Acad. Sci 2008 1148, N 1 P. 367–376.
[88] Southwick S. M., Bremner J. D., Rasmusson A., Morgan C. A., 3rd, Arnsten A., Charney D. S. Role of norepinephrine in the pathophysiology and treatment of posttraumatic stress disorder Biol. Psychiatry 1999 46, N 9 P. 1192–1204.
[89] Yehuda R., Siever L. J., Teicher M. H., Levengood R. A., Gerber D. K., Schmeidler J., Yang R. K. Plasma norepinephrine and 3methoxy-4-hydroxyphenylglycol concentrations and severity of depression in combat posttraumatic stress disorder and major depressive disorder Biol. Psychiatry 1998 44, N 1 P. 56– 63.
[90] Sabban E. L., Kvetnansky R. Stress-triggered activation of gene expression in catecholaminergic systems: dynamics of transcriptional events Trends Neurosci 2001 24, N 2 P. 91–98.
[91] Krizanova O., Micutkova L., Jelokova J., Filipenko M., Sabban E., Kvetnansky R. Existence of cardiac PNMT mRNA in adult rats: elevation by stress in a glucocorticoid-dependent manner Am. J. Physiol 2001 281, N 3 P. H1372–1379.
[92] Kvetnansky R., Kubovcakova L., Tillinger A., Micutkova L., Krizanova O., Sabban E. L. Gene expression of phenylethanolamine N-methyltransferase in corticotropin-releasing hormone knockout mice during stress exposure Cell. Mol. Neurobiol 2006 26, N 4–6 P. 733–752.
[93] Galletty F., Iacone R., Ragone E., Russo O., Della Valle E., Siani A., Barba G., Farinaro E., Strazzullo V., Strazzullo P. Lack of association between polymorphism in the beta2-adrenergic receptor gene, hypertension and obesity in the Olivetti heart study Am. J. Hypertens 2004 17, N 8 P. 718–720.
[94] Rao F., Zhang L., Wessel J., Zhang K., Wen G., Kennedy B. P., Rana B. K., Das M., Rodriguez-Flores J. L., Smith D. W., Cadman P. E., Salem R. M., Mahata S. K., Schork N. J., Taupenot L., Ziegler M. G., O'Connor D. T. Tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis: discovery of common human genetic variants governing transcription, autonomic activity, and blood pressure in vivo Circulation 2007 116, N 9 P. 993–1006.
[95] Armando I., Volpi S., Aguilera G., Saavedra J. M. Angiotensin II AT1 receptor blockade prevents the hypothalamic corticotropin-releasing factor response to isolation stress Brain Res 2007 1142 P. 92–99.
[96] Saavedra J. M., Benicky J. Brain and peripheral angiotensin II play a major role in stress Stress 2007 10, N 2 P. 185–193.
[97] Keck M. E., Holsboer F. Hyperactivity of CRH neuronal circuits as a target for therapeutic interventions in affective disorders Peptides 2001 22, N 5 P. 835–844.
[98] Minneman K. P., Hegstrand L. R., Molinoff P. B. Simultaneous determination of beta-1 and beta-2-adrenergic receptors in tissues containing both receptor subtypes Mol. Pharmacol 1979 16, N 1 P. 34–46.
[99] Zhang K., Komori T., Miyahara S., Yamamoto M., Matsumoto T., Okazaki Y. Effect of single and repeated restraint stresses on the expression of beta(1)-adrenoceptor mRNA in the rat hypothalamus and midbrain Neuropsychobiology 2002 46, N 3 P. 121–124.
[100] McEwen B. S. Stress, adaptation, and disease: Allostasis and allostatic load Ann. N. Y. Acad. Sci 1998 840 P. 33–44.
[101] Iacobas D. A., Iacobas S., Thomas N., Spray D. C. Sex-dependent gene regulatory networks of the heart rhythm Funct. Integr. Genomics 2010 10, N 1 P. 73–86.
[102] Yang J. N., Chen J. F., Fredholm B. B. Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine Am. J. Physiol. Heart Circ. Physiol 2009 296, N 4 P. H1141–1149.
[103] Cifkova R., Skodova Z., Lanska V., Adamkova V., Novozamska E., Jozifova M., Plaskova M., Hejl Z., Petrzilkova Z., Galovcova M., Palous D. Prevalence, awareness, treatment, and control of hypertension in the Czech Republic. Results of two nationwide cross-sectional surveys in 1997/1998 and 2000/2001, Czech Post-MONICA Study J. Hum. Hypertens 2004 18, N 8 P. 571–579.
[104] Vokonas P. S., Kannel W. B., Cupples L. Epidemiology and risk of hypertension in the elderly: the framingham sudy J. Hypertens. Suppl 1988 6, N 1 P. S3–9.
[105] Ong K. L., Cheung B. M., Man Y. B., Lau C. P., Lam K. S. Prevalence, awareness, treatment, and control of hypertension among united states adults 1999–2004 Hypertension 2007 49, N 1 P. 69–75.
[106] Hart E. C., Charkoudian N., Miller V. M. Sex, hormones and neuroeffector mechanisms. Acta Physiol (Oxf). 2011;203(1):155-65.
[107] Thireau J., Aimond F., Poisson D., Zhang B., Bruneval P., Eder V., Richard S., Babuty D. New insights into sexual dimorphism during progression of heart failure and rhythm disorders Endocrinology 2010 151, N 4 P. 1837–1845.
[108] Roger V. L., Go A. S., Lloyd-Jones D. M., Adams R. J., Berry J. D., Brown T. M., Carnethon M. R., Dai S., de Simone G., Ford E. S., Fox C. S., Fullerton H. J., Gillespie C., Greenlund K. J., Hailpern S. M., Heit J. A., Ho P. M., Howard V. J., Kissela B. M., Kittner S. J., Lackland D. T., Lichtman J. H., Lisabeth L. D., Makuc D. M., Marcus G. M., Marelli A., Matchar D. B., McDermott M. M., Meigs J. B., Moy C. S., Mozaffarian D., Mussolino M. E., Nichol G., Paynter N. P., Rosamond W. D., Sorlie P. D., Stafford R. S., Turan T. N., Turner M. B., Wong N. D., Wylie-Rosett J., on behalf of the American Heart Association Statistics Committee and Stroke Statistics Subcommittee, Roger V. L., Turner M. B. and on behalf of the American Heart Association Heart Disease and Stroke Statistics Writing Group Heart Disease and Stroke Statistics_2011 Update: A Report from the American Heart Association Circulation 2011 123 P. e18–e209.
[109] Lujan H. L., Dicarlo S. E. Sex differences to myocardial ischemia and beta-adrenergic receptor blockade in conscious rats Am. J. Physiol. Heart Circ. Physiol 2008 294, N 4 P. H1523–1529.
[110] Bozkurt B. Where do we currently stand with advice on hormone replacement therapy for women? Methodist Debakey Cardiovasc. J 2010 6, N 4 P. 21–25.
[111] Giardina E. G. Heart disease in women Int. J. Fertil. Womens Med 2000 45, N 6 P. 350–357.
[112] Schwarz E. R., Dashti R. The clinical quandary of left and right ventricular diastolic dysfunction and diastolic heart failure Cardiovasc. J. Afr 2010 21, N 4 P. 212–220.
[113] Kaku K., Takeuchi M., Otani K., Sugeng L., Nakai H., Haruki N., Yoshitani H., Watanabe N., Yoshida K., Otsuji Y., Mor-Avi V., Lang R. M. Ageand gender-dependency of left ventricular geometry assessed with real-time three-dimensional transthoracic echocardiography.J Am Soc Echocardiogr. 2011;24(5):541-7.
[114] Regitz-Zagrosek V., Oertelt-Prigione S., Seeland U., Hetzer R. Sex and gender differences in myocardial hypertrophy and heart failure Circ. J 2010 74, N 7 P. 1265–1273.
[115] Hutchinson K. R., Stewart J. A., Lucchesi P. A. Extracellular matrix remodeling during the progression of volume overloadinduced heart failure J. Mol. Cell. Cardiol 2010 48, N 3 P. 564–569.
[116] Ky B., Kirwan B. A., de Brouwer S., Lubsen J., Poole-Wilson P., Otterstad J. E., Kimmel S. E., St. John Sutton M. Gender differences in cardiac remodeling and clinical outcomes in chronic stable angina pectoris (from the ACTION Trial) Am. J. Cardiol 2010 105, N 7 P. 943–947.
[117] Chan V., Fenning A., Levick S., Loch D., Chunduri P., Iyer A., Teo Y., Hoey A., Wilson K., Burstow D., Brown L. Cardiovascular changes during maturation and aging in male and female spontaneously hypertensive rats J. Cardiovasc. Pharmacol 2011 Volume 57 (4):469-478
[118] Fliegner D., Schubert C., Penkalla A., Witt H., Kararigas G., Dworatzek E., Staub E., Martus P., Ruiz Noppinger P., Kintscher U., Gustafsson J. A., Regitz-Zagrosek V. Female sex and estrogen receptor-beta attenuate cardiac remodeling and apoptosis in pressure overload Am. J. Physiol. Regul. Integr. Comp. Physiol 2010 298, N 6 P. R1597–1606.
[119] Satoh M., Matter C. M., Ogita H., Takeshita K., Wang C. Y., Dorn G. W., 2nd, Liao J. K. Inhibition of apoptosis-regulated signaling kinase-1 and prevention of congestive heart failure by estrogen Circulation 2007 115, N 25 P. 3197–3204.
[120] Ghali J. K., Krause-Steinrauf H. J., Adams K. F., Khan S. S., Rosenberg Y. D., Yancy C. W., Young J. B., Goldman S., Peberdy M. A., Lindenfeld J. Gender differences in advanced heart failure: insights from the BEST study J. Am. Coll. Cardiol 2003 42, N 12 P. 2128–2134.
[121] Ghali J. K., Lindenfeld J. Sex differences in response to chronic heart failure therapies Expert. Rev. Cardiovasc. Ther 2008 6, N 4 P. 555–565.
[122] Gardner J. D., Murray D. B., Voloshenyuk T. G., Brower G. L., Bradley J. M., Janicki J. S. Estrogen attenuates chronic volume overload induced structural and functional remodeling in male rat hearts Am. J. Physiol. Heart Circ. Physiol 2010 298, N 2 P. H497–504.
[123] Konhilas J. P., Leinwand L. A. The effects of biological sex and diet on the development of heart failure Circulation 2007 116, N 23 P. 2747–2759.
[124] Merz C. N. B., Olson M. B., McClure C., Yang Y.-C., Symons J., Sopko G., Kelsey S. F., Handberg E., Johnson B. D., CooperDeHoff R. M., Sharaf B., Rogers W. J., Pepine C. J. A randomized controlled trial of low-dose hormone therapy on myocardial ischemia in postmenopausal women with no obstructive coronary artery disease: Results from the National Institutes of Health/National Heart, Lung, and Blood Institutesponsored Women's Ischemia Syndrome Evaluation (WISE) Am. Heart J 2010 159, N 6 P. 987. e1–7.
[125] Novakova M., Kvetnansky R., Myslivecek J. Sexual dimorphism in stress-induced changes in adrenergic and muscarinic receptor densities in the lung of wild type and corticotropin-releasing hormone-knockout mice Stress 2010 13, N 1 P. 22–35.
[126] Goldstein J. M., Jerram M., Abbs B., Whitfield-Gabrieli S., Makris N. Sex differences in stress response circuitry activation dependent on female hormonal cycle J. Neurosci 2010 30, N 2 P. 431–438.
[127] Garcia-Barrado M. J., Iglesias-Osma M. C., Moreno-Viedma V., Pastor Mansilla M. F., Gonzalez S. S., Carretero J., Moratinos J., Burks D. J. Differential sensitivity to adrenergic stimulation underlies the sexual dimorphism in the development of diabetes caused by Irs-2 deficiency Biochem. Pharmacol 2011 81, N 2 P. 279–288.
[128] Kumsta R., Entringer S., Koper J. W., van Rossum E. F., Hellhammer D. H., Wust S. Sex specific associations between common glucocorticoid receptor gene variants and hypothalamuspituitary-adrenal axis responses to psychosocial stress Biol. Psychiatry 2007 62, N 8 P. 863–869.
[129] van Rooij E., Fielitz J., Sutherland L. B., Thijssen V. L., Crijns H. J., Dimaio M. J., Shelton J., De Windt L. J., Hill J. A., Olson E. N. Myocyte enhancer factor 2 and class II histone deacetylases control a gender-specific pathway of cardioprotection mediated by the estrogen receptor Circ. Res 2010 106, N 1 P. 155–165.
[130] Pacanowski M. A., Zineh I., Li H., Johnson B. D., CooperDeHoff R. M., Bittner V., McNamara D. M., Sharaf B. L., Merz C. N., Pepine C. J., Johnson J. A. Adrenergic gene polymorphisms and cardiovascular risk in the NHLBI-sponsored Women's Ischemia Syndrome Evaluation J. Transl. Med 2008 6, N 1 P. 11.
[131] Christiansen D. M., Elklit A. Risk factors predict post-traumatic stress disorder differently in men and women Ann. Gen. Psychiatry 2008 7 P. 24.
[132] Olff M., Langeland W., Draijer N., Gersons B. P. R. Gender differences in posttraumatic stress disorder Psychol. Bull 2007 133, N 2 P. 183–204.
[133] Macabasco-O'Connell A., Crawford M. H., Stotts N., Stewart A., Froelicher E. S. Gender and racial differences in psychosocial factors of low-income patients with heart failure Heart Lung 2010 39, N 1 P. 2–11.
[134] Huzen J., van der Harst P., de Boer R. A., Lesman-Leegte I., Voors A. A., van Gilst W. H., Samani N. J., Jaarsma T., van Veldhuisen D. J. Telomere length and psychological well-being in patients with chronic heart failure Age Ageing 2010 39, N 2 P. 223–227.
[135] Wong L. S., Oeseburg H., de Boer R. A., van Gilst W. H., van Veldhuisen D. J., van der Harst P. Telomere biology in cardiovascular disease: the TERC–/– mouse as a model for heart failure and ageing Cardiovasc. Res 2009 81, N 2 P. 244–252.
[136] Lee K. S., Song E. K., Lennie T. A., Frazier S. K., Chung M. L., Heo S., Wu J.-R., Rayens M. K., Riegel B., Moser D. K. Symptom clusters in men and women with heart failure and their impact on cardiac event-free survival J. Cardiovasc. Nurs 2010 25, N 4 P. 263–272.
[137] Neckelmann D., Mykletun A., Dahl A. A. Chronic insomnia as a risk factor for developing anxiety and depression Sleep 2007 30, N 7 P. 873–880.
[138] Hayes D. Jr., Anstead M. I., Ho J., Phillips B. A. Insomnia and chronic heart failure Heart Fail. Rev 2009 14, N 3 P. 171– 182.
[139] Cocco G., Chu D. Stress-induced cardiomyopathy: a review Eur. J. Intern. Med 2007 18, N 5 P. 369–379.
[140] Primetshofer D., Agladze R., Kratzer H., Reisinger J., Siostrzonek P. Tako-Tsubo syndrome: an important differential diagnosis in patients with acute chest pain Wien. Klin. Wochenschr 2010 122, N 1 P. 37–44.